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Abstract

Large Vision Language Models (LVLMs) have achieved sig-
nificant success across multi-modal tasks. However, the
computational cost of processing long visual tokens can be
prohibitively expensive on resource-limited devices. Pre-
vious methods have identified redundancy in visual tokens
within the Large Language Model (LLM) decoder layers
and have mitigated this by pruning tokens using a pre-
defined or fixed ratio, thereby reducing computational over-
head. Nonetheless, we observe that the impact of prun-
ing ratio varies across different LLM layers and instances
(image-prompt pairs). Therefore, it is essential to develop
a layer-wise and instance-wise vision token pruning strat-
egy to balance computational cost and model performance
effectively. We propose ATP-LLaVA, a novel approach that
adaptively determines instance-specific token pruning ra-
tios for each LLM layer. Specifically, we introduce an Adap-
tive Token Pruning (ATP) module, which computes the im-
portance score and pruning threshold based on input in-
stance adaptively. The ATP module can be seamlessly inte-
grated between any two LLM layers with negligible compu-
tational overhead. Additionally, we develop a Spatial Aug-
mented Pruning (SAP) strategy that prunes visual tokens
with both token redundancy and spatial modeling perspec-
tives. Our approach reduces the average token count by
75% while maintaining performance, with only a minimal
1.9% degradation across seven widely used benchmarks.
The project page can be accessed via the following link.

1. Introduction

The emergence of Large Vision Language Models
(LVLMs) [2, 4, 12, 24, 28–30, 46, 55, 57] has significantly
advanced visual understanding. These approaches lever-
age visual encoders to extract visual features, which are
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Figure 1. (a) Previous methods employ a fixed, pre-defined token
pruning ratio. (b) Illustration of ATP-LLaVA, which dynamically
selects the adaptive pruning ratio for each layer of the LLM de-
coder based on the instance-specific characteristics.

then processed jointly with text in Large Language Mod-
els (LLMs). Despite their impressive multi-modal under-
standing capabilities, the deployment of these models is of-
ten hindered by the substantial memory and computational
costs when processing large number of visual tokens, espe-
cially in resource-constrained environments.

To address this issue, previous methods [8, 9, 43, 52]
have focused on compressing visual tokens by pruning re-
dundant ones, as visual information tends to be sparser com-
pared to natural language information. While these meth-
ods can mitigate the loss of model’s understanding capabil-
ities caused by token pruning, they share a common limi-
tation: requiring a fixed pruning ratio (i.e., a fixed number
of retained tokens or a non-learnable threshold) to be pre-
defined for the model, as shown in Fig. 1 (a). Recently,
some methods [7, 15] have explored training a single model
that can handle varying visual token counts. However, it
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Figure 2. Comparison of vision token pruning at different LLM
decoder layers and pruning ratios across fine-grained and coarse-
grained tasks of the SEED-Image [23]. Fine-grained tasks include
instance counting, spatial relation, etc. Coarse-grained tasks in-
clude scene understanding, etc.

remains necessary to manually specify a pruning ratio for
each individual sample. Due to the varying complexity of
different tasks and the differing levels of content within im-
ages, a pre-defined pruning ratio may result in either in-
formation loss or excessive information retention, conse-
quently impacting the model’s efficiency and effectiveness.

To further validate this, we conducted a preliminary ex-
periment to examine the effects of pruning visual tokens at
various layers of LVLMs and across different pruning ra-
tios. As shown in Fig. 2, the impact of pruning ratio on per-
formance is layer-wise, with shallower layers being more
sensitive to pruning and deeper layers exhibiting greater ro-
bustness. Moreover, we compared the performance of prun-
ing across tasks of varying complexity and observed that the
pruning ratio’s impact is also instance-wise. Fine-grained
tasks, such as instance counting and spatial relation, de-
mand detailed visual information, necessitating the reten-
tion of more tokens at each layer to prevent performance
degradation. In contrast, coarse-grained tasks like scene un-
derstanding do not exhibit significant performance loss even
at high pruning ratios. These observations indicate that the
optimal pruning ratio, which achieves the best balance be-
tween performance and efficiency, varies for each instance
and each layer. A pre-defined pruning ratio can lead to sub-
optimal model performance and efficiency.

In this paper, we propose a framework called Adaptive
Token Pruning for large vision language models (ATP-
LLaVA), as illustrated in Fig. 1 (b), which adaptively deter-
mines the pruning ratio. Specifically, we design an Adap-
tive Token Pruning (ATP) module that can be seamlessly in-
tegrated between any two LLM layers with negligible com-
putation cost. The ATP module first employs a Spatial Aug-
mented Pruning (SAP) policy to dynamically prune tokens
for each instance. This policy adopts scores on two per-
spectives to evaluate the importance of each token. The first
perspective, the redundant pruning score, computes token
importance by leveraging both intra-modal and cross-modal

correlations. The second perspective, the spatial pruning
score, evaluates the spatial information within the token sets
that are spatially uniform sampled at various granularity.
Building upon these two scores, two learnable thresholds
are introduced at each ATP module to dynamically select
important tokens for each LLM layer and each instance. To-
kens that are not selected will be discarded in subsequent
layers. Lastly, to further enhance the training process, we
propose an ATP-Loss function to strike a balance between
token pruning efficiency and understanding capability. We
summarize our contributions as follows:
• We reveal the importance of adaptively determining prun-

ing ratios at the instance and LLM layer levels for ef-
fective visual token pruning, and propose ATP-LLaVA, a
framework that dynamically reduces computational cost
for large vision language models.

• To enable the model to learn the adaptive token pruning
strategy, we introduce an Adaptive Token Pruning (ATP)
module, along with an ATP-Loss function, thereby bal-
ancing pruning efficiency and model capabilities.

• To mitigate the loss in visual understanding performance
caused by token pruning, we introduce a Spatial Aug-
mented Pruning (SAP) approach , which preserves spatial
modeling during the pruning process.

• ATP-LLaVA achieves a 75% average pruning ratio while
maintaining 98.1% performance across seven widely used
vision understanding benchmarks.

2. Related work
Large Vision-Language Models. The impressive progress
of large language models (LLMs) [6, 10, 17, 19, 39, 42, 47,
48] has sparked interest in developing large vision language
models (LVLMs) that can bridge the gap between visual
and linguistic understanding. LVLMs have shown impres-
sive capabilities in cross-modal understanding and visual
language tasks through modality alignment and instruction
tuning. Previous works [1–4, 11, 12, 24, 28, 29, 49, 50, 55,
57] have validated the efficacy of this training paradigm in
visual understanding. The success of LVLMs has also been
extended to the video domain [16, 21, 25, 27, 30–33, 36–
38, 46, 53, 54]. Furthermore, research has shown that
LVLMs can capture rich visual information for understand-
ing and generation when provided with high-resolution im-
ages [4, 28]. However, the growing number of vision tokens
occupy a substantial portion of the LLM’s valuable context
window and leading huge bottleneck for computational in-
frastructure. To address this, further innovation in token
compression and pruning techniques is essential.
Vision Token Compression and Pruning. To compress vi-
sion information with less tokens, previous methods [11, 12,
24, 55, 57] have largely employed Q-Former [24], which
maps images to fixed-length learnable queries. [27, 51]
have applied simple pooling strategy to downsample vi-
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sual features. [52] try to distill the LLMs’ understanding
paradigm of vision tokens into single VoCo token to re-
duce inference cost. [43] identifies redundant visual tokens
through clustering analysis and prunes them. [9] reveals
that vision tokens within LLM Transformer layers are also
redundant, and pruning them internally incurs less penalty
than pruning before inputting to the LLM. Although these
methods can mitigate the loss caused by token compression,
they are limited by relying on a pre-defined pruning rate.
While [20, 22, 41] explore adaptive token pruning in Vision
Transformers, this area remains relatively under-explored
in the context of Large Vision Language Models. Recent
methods [7, 15] offer flexible choices for the number of vi-
sual tokens, but they struggle to adaptively determine the
optimal pruning ratio. ATP-LLaVA can adaptively deter-
mine the pruning ratio within any layer of the LLM, based
on the specific instance characteristics.

3. Method
3.1. Overview
The ATP-LLaVA architecture, as shown in Fig. 3, centers
around the Adaptive Token Pruning (ATP) module that
can be easily inserted between any two decoder layers in
the LLM decoder backbone. The ATP module first com-
putes importance scores for visual tokens based on the self-
attention map from the previous layer, and then utilizes
two lightweight prediction heads to learn pruning thresh-
olds with minimal additional parameters. These two pre-
diction heads generate learnable thresholds for redundant
and spatial pruning of visual tokens, respectively, enabling
layer-wise and instance-wise adaptive pruning.

In the following sections, we provide a brief overview of
the LLM decoder in Sec. 3.2. We then present our Adaptive
Token Pruning module in Sec. 3.3. Specifically, the ATP
module consists of three key components: Spatial Aug-
mented Pruning approach (Sec. 3.3.1), Learnable Thresh-
olds (Sec. 3.3.2), and ATP-Loss (Sec. 3.3.3).

3.2. Preliminaries
The LLM decoder consists of multiple decoding layers (i.e.,
32 layers in LLaMA [47]). Each decoding layer typically
uses self-attention with a causal mask. The input to each
Transformer layer is a concatenation of vision and text to-
kens H ∈ RL×D, where L is the total length of the tokens
and D is the hidden dimension. For the causal attention
mechanism (considering single-head attention as an exam-
ple), the self-attention logits can be computed by

Alogits = QKT /
√
D, (1)

where Q ∈ RL×D and K ∈ RL×D are the query and
key matrices, respectively. It yields the resulting logits ma-
trix Alogits ∈ RL×L. To accommodate the causal attention

mechanism in the decoder, a lower triangular masking ma-
trix M ∈ RL×L is element-wise added to the logits when
computing final attention weights A, resulting in

A = Softmax(Alogits +M), (2)

Following the self-attention, each layer is connected to a
Feed Forward Network (FFN) layer, enabling the model to
capture contextual relationships within each modality.

3.3. Adaptive Token Pruning
Given the output of the i-th Transformer decoder layer, de-
noted as Hi. It consists of two components: the hidden
states of visual tokens, represented as Vi ∈ RLv×D, and the
hidden states of text tokens, represented as Ti ∈ RLt×D

(we ignore the system prompt input for simplicity). The
ATP module removes redundant tokens from V , resulting
in unpruned visual tokens, denoted as V p

i ∈ RLp
v×D, where

Lp
v < Lv . The maintained visual tokens are then concate-

nated with the original text tokens T and fed into the follow-
ing LLM layer. Visual tokens pruned at the current layer are
irretrievable in subsequent layers.

3.3.1. Spatial Augmented Pruning
Token pruning in large vision language models disrupts spa-
tial modeling, which is crucial for vision understanding. To
mitigate this, we introduce the Spatial Augmented Pruning
(SAP) approach. SAP consists of two stages: (1) redundant
pruning, which assigns importance scores to visual tokens
and prunes them based on a threshold, and (2) spatial prun-
ing, which uniformly samples tokens in the spatial dimen-
sion. The pruning masks from both stages are then com-
bined to form the final pruning strategy.
Redundant Pruning Score. To perform redundant token
pruning, we define the importance score for each token. In-
tuitively, we consider both the vision token’s self-modality
importance and its importance to the text modality. For the
current layer’s visual tokens Vi = {v1, . . . , vLv}, a visual
token vn is deemed important if it receives significant atten-
tion from other visual tokens in the same layer. Specifically,
as shown in the self-attn map of Fig. 3 (left), this importance
score can be obtained from the attention logits Ai

logits of the
i-th Transformer layer. The self-modality importance score
Sself
n for token vn is defined as:

Sself
n =

1

Lv

Lv∑
m=1

Ai
logits(vn, vm) ∈ RLv , (3)

Similarly, visual tokens that receive greater attention
from all text tokens should be assigned a higher importance
score in the text modality. As shown in the text-vision map
of Fig. 3 (left), this importance score can be obtained from
the attention map Ai of the i-th Transformer layer. Given
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Figure 3. Illustration of the Adaptive Token Pruning (ATP) module. The ATP module can be flexibly inserted between any two LLaMA
decoder layers. It adaptively predicts pruning thresholds for current layer and instance. Redundant or text-irrelevant visual tokens are
pruned at this stage, and they will be ignored by other tokens in subsequent LLaMA decoder layers.

the current layer’s text tokens Ti = {t1, . . . , tLt
}, we define

the cross-modality importance score Scross
n for token vn as:

Scross
n =

1

Lt

Lt∑
m=1

Ai(vn, tm) ∈ RLv , (4)

where the probability Ai(vn, tm) represents the normalized
value that token tm focuses on vn. We calculate the final
score Sredundant

n by taking the average of Sself
n and Scross

n .
Having obtained the token scores, a learnable pruning

threshold is introduced to selectively retain tokens. A de-
tailed discussion on this is presented in Sec. 3.3.2.
Spatial Pruning Score. Uniform spatial sampling of vi-
sual tokens was proposed by LLaVA-PruMerge [43] to pre-
serve spatial visual information. However, we observe that
the impact of sampling ratio varies across different input
instances and LLM layers. We found that excessive sam-
pling of spatial tokens significantly increases token count,
with the sampling ratio’s impact varying across different in-
put instances and LLM layers. To address this, we design a
dynamic uniform spatial sampling strategy.

As illustrated in Fig. 3 (top), we define a spatial pruning
score Sspatial ∈ RLv within the range of (0, 1]. The sam-
pling rate Rs is defined as the ratio of the uniform sampled
tokens to the visual tokens Lv . Under this sampling rate,
we acquire a set of sampled visual tokens Vs. The score of

the sampled visual tokens is defined as:

Sspatial
n = 1−Rs · λsample, vn ∈ Vs, (5)

where λsample is a scaling coefficient. Tokens sampled at
higher rates are given higher scores. We introduce a learn-
able threshold for spatial pruning, allowing us to dynami-
cally adjust the spatial pruning rate instance-wise and layer-
wise, despite the fixed spatial pruning score.
Positional Embeddings for Token Pruning. Merely ap-
plying uniform spatial sampling is insufficient to enhance
spatial modeling, as the sampled tokens will be flattened
into a sequence and fed into the LLM. To address this, we
employ 2D rotary embedding [45, 49], which enhances the
spatial information. Furthermore, previous methods typi-
cally reorganize the retained tokens’ position embeddings
into a contiguous sequence (e.g., 0, 1, 2, ...), which may dis-
rupt spatial features under 2D positional encoding. In con-
trast, we preserve the original position embeddings of the
retained tokens after pruning.

3.3.2. Adaptive Pruning with Learnable Thresholds
To adapt to the dynamic changes in pruning thresholds
across different layers and instances, we introduce a MLP
with dual prediction heads to learn instance-specific thresh-
olds. The determination of pruning thresholds should be
highly correlated with the instance itself, and thus we lever-
age the self-modality and cross-modality scores computed
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in Sec. 3.3.1 as inputs to the prediction module.
Specifically, given the visual token scores Sself

n and
Scross
n , we compute the redundant pruning threshold θr and

spatial pruning threshold θs as follows:

z = Linear(cat(Sself
Vi

, Scross
Vi

)), (6)

θr = σ(Linearr(z)) ∈ R1, (7)

θs = σ(Linears(z)) ∈ R1, (8)

However, the hard masks generated by threshold prevent
gradient backpropagation, rendering the threshold predic-
tion module untrainable. Inspired by [5], we convert the
hard masks to differentiable soft masks:

Maskri = σ((Sredundant
Vi

− θr) · T ) ∈ RLv , (9)

Masksi = σ((Sspatial
Vi

− θs) · T ) ∈ RLv , (10)

Maski = max(Maskri ,Masksi ) ∈ RLv , (11)

where T is a temperature coefficient that, when sufficiently
large, renders the sigmoid function a differentiable mask.

Besides, directly discarding unselected visual tokens us-
ing the mask is non-differentiable for the learnable thresh-
old module, hindering end-to-end learning of token pruning
strategies. And pruning varying numbers of tokens per in-
stance within a batch complicates parallel training. To ad-
dress these challenges, we followed [41] and utilize masks
during the attention Softmax operation, effectively eliminat-
ing the influence of pruned tokens on others and ensuring a
differentiable process. Specifically, we multiply the expo-
nential results by the pruning mask after computing the ex-
ponentials and before summing them up. We only apply the
softmax mask during the training phase. In the inference
phase, the pruned tokens are directly discarded and do not
participate in any subsequent layer computations.

3.3.3. Budget-Constrained Training
Our goal is to encourage the model to learn an optimal prun-
ing strategy that balances computational cost and perfor-
mance loss. To achieve this, we design an ATP loss func-
tion that trains the model under limited pruning constraints.
Specifically, we introduce a penalty term that discourages
the model from retaining excessive tokens. The penalty
term should be designed to increase with both the number
of remaining tokens and the layer depth, accounting for the
diminishing returns of deep pruning on computational cost.

Given the index set I = {i0, . . . , in} of LLM layers
where ATP module is introduced, the differentiable pruning
masks are denoted as Masks = {Maskik | ik ∈ I}. To
facilitate backpropagation, we compute the sum of Maskik
to obtain the number of remaining tokens after pruning at
layer ik. The penalty term can be expressed as:

LATP =

I∑
ik

Sum(Maskik)

576
∗ ik, (12)

To constrain the average token count with a target value,
we compute the average token count N across all layers
within a batch and minimize the difference between N and
the target token value Ntarget using:

Ltarget =|| N −Ntarget ||, (13)

We adopt a supervised fine-tuning (SFT) setting for visual
language models as our training paradigm. The full training
objective for ATP module is:

L = Lntp + LATP ∗ λATP + Ltarget ∗ λtarget, (14)

where λATP and λtarget are scaling coefficients that control
the impact of computational budget constraints on training.

3.4. Efficiency Analysis
At inference time, tokens with values below the thresh-
old are directly discarded, which reduces the computational
overhead of the model during inference. We only consider
the computation of multi-head attention and feed-forward
network module of LLM in the FLOPs estimation. The the-
oretical FLOPs of each LLM layer with unpruned tokens
can be calculated as:

FLOPsL = 4Ld2 + 2L2d+ 2Ldm, (15)

where L represents the total number of input tokens to the
first layer of the LLM without pruning, d denotes the hidden
state size, and m is the intermediate size of FFN. Example
as the ATP module is inserted after the ik-th layer, ik ∈ I .
Let Lp

ik
represent the preserved token length after pruning,

iN denote the final layer index in the LLM decoder. We
compute the FLOPs reduction across the entire model as:

{I,iN}∑
ik

(ik+1 − ik) ∗ (FLOPsL − FLOPsL
p
ik ). (16)

Additionally, our ATP-LLaVA introduces a slight additional
computational overhead for the ATP module, which is fur-
ther elaborated in the supplementary material.

4. Experiments
4.1. Implementation Details
Regarding the training strategy and data, ATP-LLaVA fol-
lows a standard vision instruction tuning stage. LLaVA-
1.5 [28] is chosen as the base model for ATP-LLaVA.
Specifically, we employ the pre-trained CLIP-ViT-L [40] as
our visual encoder followed by a linear projector to align
text and vision modality. We directly utilize pretrained pro-
jectors from LLaVA-1.5, which were trained on the filtered
CC3M dataset [44] with the fixed language model and vi-
sion encoder. For pre-trained large language models, we
utilize Vicuna-7B-1.5 [10]. For training data, we use 665k
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Method Token GQA MMB MME POPE SEED SQAI VQAv2 Avg.

Upper Bound Model

LLaVA-1.5 [28] 576 62.0 64.3 1510.7 85.8 58.6 71.6 78.5 -
100% 100% 100% 100% 100% 100% 100% 100%

Methods with Pre-defined Pruning Ratio

PruMerge+ [43] 144 - 64.9 1462.4 84.0 - 68.3 76.8 -
- 100.9% 96.8% 97.9% - 95.4% 97.8% 97.8%

FastV [9]
192 52.7 61.2 1312.4 64.8 50.8 65.4 67.1 -

83.8% 95.2% 86.9% 75.5% 86.7% 91.3% 85.5% 86.4%

128 49.6 56.1 1187.9 59.6 48.1 59.7 61.8 -
80.0% 87.2% 78.6% 69.5% 82.1% 83.4% 78.7% 79.9%

SparseVLM [56]
192 57.6 62.5 1382.8 83.6 53.0 67.2 75.6 -

92.9% 97.2% 91.5% 97.4% 90.4% 93.9% 96.3% 94.2%

128 56.0 60.0 1296.7 80.5 50.2 65.5 73.8 -
90.3% 93.3% 85.8% 96.3% 85.7% 91.5% 94.0% 91.0%

Methods with Adaptive Pruning Ratio

ATP-LLaVA
144* 59.5 66.0 1473.9 84.2 57.3 69.1 76.4 -

96.0% 102.6% 97.6% 98.1% 97.8% 96.5% 97.3% 98.1%

88* 56.8 64.7 1401.5 82.6 55.7 67.2 73.3 -
91.6% 100.6% 92.8% 96.3% 95.1% 93.9% 91.8% 94.6%

Table 1. Comparison with previous approaches on vision token pruning within LLM decoder layers using common visual understanding
benchmarks. (Token) indicates the average token count for all layers in language model. Token count with (*) means the retained token
count is not pre-defined and adaptively determined by learnable ATP module. We calculate the average token count during inference across
all benchmarks. The percentage represents the compression retention rates to Upper Bound model.

visual instruction following data [28] to tune our model. We
train ATP-LLaVA using lr of 2e-5 for LLM and 1e-4 for the
ATP module for 1 epoch. All other hyperparameters and
settings are identical to those used in LLaVA-1.5. As for
the scaling coefficients, λsample is set as 3, λtarget is set as
0.2, and λATP is set within the range of 0.01 to 0.1. Varying
the value of λATP during model training has an impact on
the final average FLOPs of the resulting model.

4.2. Datasets

We conduct experiments on several common visual under-
standing benchmarks for vision token pruning in this work.
Specifically, we report results on GQA [18], MMB (MM-
Bench) [34], MME [13], POPE [26], SEED-Bench [23],
SQAI (Image-based setting in ScienceQA) [35] and VQAv2

(VQA V2) [14]. We can assess the impact of visual infor-
mation loss during the pruning process by comparing the
model’s performance on these visual understanding bench-
marks before and after pruning. We follow the evaluation
details outlined in [29] to assess the model’s performance
on these visual understanding benchmarks.

4.3. Results

Main Results. We report results of our ATP-LLaVA on var-
ious common visual understanding benchmarks to presents
the vision token pruning performance. Besides, to rigor-
ously quantify the performance loss of ATP-LLaVA dur-
ing token pruning, we also report the compression retention
rates to the Upper Bound model (i.e., LLaVA-1.5 [28] in
this paper). We compare our method with previous token
pruning methods. For fair comparisons, we constrain ATP-
LLaVA with a limited budget and average token count. In
particular, we adjust the scaling coefficients and the target
token number in Eq. (13) and Eq. (14). The token count
is an average value across all decoder layers (i.e., 32 layers
in LLaMA [47]) on a uniform sampled set across all re-
ported benchmarks during inference. As shown in Tab. 1,
it can be observed that our method preserves the origi-
nal vision understanding capability to a large extent. No-
tably, we achieved an average compression retention rate
of 98.1% and 94.6% across seven widely used benchmarks,
when pruning from 576 to 144 and 88 tokens, respectively.
Especially on MMBench and SEED-Bench, our method
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Pruning Avg. Pruning Pruning Avg. MMB GQA VQAv2 SEED
Strategy Tokens Ratio Layer Indexes Retained Tokens

Upper Bound 576 - - - 64.3 62.0 78.5 58.6

Pre-defined Ratio
144 3/4 [1] [130] 59.6 56.2 71.6 53.1
144 2/3 [4, 14, 24] [162, 54, 18] 62.7 58.0 74.6 55.7
144 1/2 [4, 14, 24] [136, 68, 34] 63.2 58.2 73.9 55.3

ATP-LLaVA 144*

-
[4, 14, 24] [126*, 88*, 20*] 66.0 59.5 76.4 57.3

88* [1, 13, 25] [98*, 79*, 16*] 64.7 56.8 73.3 55.7

Table 2. Comparison with pre-defined pruning strategy under same traing setting using common benchmarks. (Pruning Layer Indexes)
specify the LLM layer indexes at which vision tokens are pruned, starting from 0 and occurring prior to input.

LM Token MMB GQA VQAv2 SEED

Frozen 144* 63.1 57.9 75.2 54.9
Trainable 144* 66.0 59.5 76.4 57.3

Table 3. Ablation study on training strategy for ATP-LLaVA using
common visual understanding benchmarks. (Frozen) means only
the ATP module is trainable while freezing the language model.

RP SP PP MMB GQA VQAv2 SEED

✓ ✓ ✓ 66.0 59.5 76.4 57.3
✓ 65.3 58.3 75.1 56.5

✓ 64.3 57.1 74.2 55.1
✓ ✓ 65.2 58.6 74.9 56.3

Table 4. Ablation study on SAP approach for ATP-LLaVA using
common visual understanding benchmarks. (RP) indicates using
redundant pruning strategy, (SP) indicates using spatial pruning
strategy, and (PP) indicates using pruning positional embedding.

Sself Scross MMB GQA VQAv2 SEED

✓ ✓ 66.0 59.5 76.4 57.3
✓ 66.1 58.7 75.8 56.9

✓ 65.4 59.2 76.1 56.3

Table 5. Ablation study on redundant pruning score for ATP-
LLaVA using common visual understanding benchmarks. (Sself )
indicates the self-modality importance score in Eq. (3), and
(Scross) indicates the cross-modality importance score in Eq. (4).

achieves and even surpasses the performance of the Upper
Bound model. This demonstrates that ATP-LLaVA can sub-
stantially enhance inference efficiency with only a negligi-
ble performance degradation.
Pruning Strategy. To evaluate the adaptability of Adap-
tive Token Pruning (ATP) module, we conduct experiments
using pre-defined pruning ratio strategy. Specifically, we
replace the ATP module with a pre-defined pruning ratio
strategy that prunes visual tokens at a fixed ratio across all

layers, while maintaining the other modules. The pruned
tokens will be directly discarded, eliminating the need of
differentiable design introduced in Sec. 3.3.2. The pre-
defined ratio models are trained under the same setting and
dataset as ATP-LLaVA. We report the performance of the
model on common visual understanding benchmarks at var-
ious pruning rates (3/4, 2/3, and 1/2) and compare it to
the ATP strategy with the same average number of pruned
tokens. As shown in Tab. 2, ATP-LLaVA consistently out-
performs models trained with fixed pruning rates across all
four benchmarks. Especially, ATP-LLaVA attains notice-
able improvements compared with the best fixed pruning
ratio model, with large margins of 2.8, 1.6 and 1.6 absolute
points on MMBench, VQAv2 and SEED. These results il-
lustrate that tailoring adaptive pruning strategies to specific
instances and layers can help mitigate performance degra-
dation when pruning tokens within a constrained budget.
Training Strategy. We further investigate the influence of
training strategies on the performance of ATP-LLaVA. In
our main experiments, we adopt the training setting of vi-
sual instruction tuning, where both the ATP module and lan-
guage model are trainable. To explore more efficient train-
ing paradigms, we conduct additional experiments by freez-
ing the language model and solely training the lightweight
ATP module. We omit pruning positional embedding from
these comparative experiments, as it is incompatible with
the frozen language model training paradigm. As evident
in Tab. 3, ATP-LLaVA is capable of learning adaptive token
pruning strategies and mitigating the degradation in capa-
bility caused by token pruning under the training paradigm
with a frozen language model. Concurrently, fine-tuning the
language model enables the LLM to better adapt to visual
understanding with a limited number of tokens. More train-
ing details can be found in the supplementary materials.
Token Pruning Technique. We conduct several ablations
to evaluate the effectiveness of the key components in ATP-
LLaVA. Firstly, we remove the redundant pruning strategy
(RP), spatial pruning strategy (SP) and pruning positional
embedding (PP), respectively. The average token count
in these experiments is adjusted to be identical, i.e., 144.
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Method
Avg.

Accuracy
Storage

∆
CUDA

∆
FLOPs

∆
Token Memory (MB) Time (ms) ↓ (T) ↓

Upper Bound 576 100% 302.4 - 432.7 - 9.6 -
FastV [9] 144 81.7% 75.6 75% 259.1 40.1% 2.0 79.2%

ATP-LLaVA 144 98.1% 75.6 75% 266.4 38.4% 2.1 78.1%
88 94.6% 46.2 84.7% 226.8 47.6% 1.5 84.4%

Table 6. Efficiency analysis of ATP-LLaVA including cache storage memory, CUDA times and the FLOPs. ∆ denotes the reduction ratio.

ATP-LLaVA: The horses are in a field near the beach, 
walking through the grass and running along the shore.

Layer 4

Prompt: Where are the horses?

Layer 14 Layer 24

106 tokens 81 tokens 19 tokens 143 tokens 109 tokens 21 tokens

Prompt: What are placed on the road?

ATP-LLaVA: There are several orange and white 
construction signs placed on the road.

Layer 4 Layer 14 Layer 24Input Input

Figure 4. Visualized vision token pruning results of ATP-LLaVA. White tokens represents the pruned tokens. The uniform sampled tokens
are pruned by spatial pruning threshold, while the sparse tokens are pruned by redundant pruning threshold. Zoom in to have a better view.

Tab. 3 shows that removing redundant pruning and spatial
pruning leads to an average drop of 1.05 and 1.0 abso-
lute points across four common benchmarks, respectively.
Furthermore, in comparison to employing spatial sampling
pruning in isolation, the synergistic application of spatial
pruning and pruning positional encoding yields more pro-
nounced performance improvements. Specifically, the in-
tegration of pruning positional encoding results in an im-
provement of 0.9 absolute points when spatial pruning strat-
egy is applied. These results demonstrate the benefit of ex-
ploiting the pruning technique from both token redundancy
and spatial modeling perspective.

Pruning Importance Score. In this ablation study, we
separately utilize either the self-modality importance score
or the cross-modality importance score for redundant to-
ken pruning. As shown in Tab. 5, relying solely on self-
score and cross-score results in average absolute perfor-
mance drops of 0.43 and 0.55 points, respectively, across
four common benchmarks. These results illustrate that both
intra-modal and cross-modal importance scores are equally
significant in quantifying the redundancy of visual tokens.

Efficiency Analysis. We evaluate the inference efficiency
of ATP-LLaVA through a comparative analysis with the Up-
per Bound model and FastV [9]. Our results, presented
in Tab. 6, demonstrate that ATP-LLaVA achieves signifi-
cant reductions in KV cache storage memory (75%), CUDA
time (38.4%), and FLOPs (78.1%) compared to the Upper
Bound model, while maintaining 98.1% performance. In
comparison to FastV, the introduction of threshold predic-
tion linear layers in ATP module incurs a minor computa-

tional overhead (1.1% in FLOPs, 1.7% in CUDA time), but
yields a substantial performance gain (16.4% accuracy im-
provement). We conclude that the performance benefits out-
weigh the negligible increase in computational cost. More
discussions are provided in the supplementary materials.
Visualization Results. In Fig. 4, we visualize the instance-
specific pruning results using the optimal ATP-LLaVA
model from Tab. 1, which has an average token count of
144. The uniformly distributed tokens in the figure result
from spatial token pruning, whereas the sparse tokens arise
from redundancy token pruning. The example on the left il-
lustrates an image of lower complexity, where the model
prunes extensively in the shallow and middle layers (4-
th and 14-th layers), while selectively retaining prompt-
relevant tokens (e.g., “horses”). In contrast, the example on
the right presents an image of higher complexity, where the
model retains a larger number of tokens in the shallow and
middle layers, particularly those related to the object’s loca-
tion (e.g., “on the road”). In the 24-th layer, token preserva-
tion is minimal, as visual information has been largely con-
solidated into text tokens through preceding layers. These
results demonstrate that ATP-LLaVA adaptively prunes to-
kens across layers based on instance-specific visual com-
plexity and text-vision relevance. We provide additional vi-
sualizations in the supplementary materials.

5. Conclusion
In this paper, we propose ATP-LLaVA, which adaptively
prunes vision tokens for large vision language models on
layer and instance level. By introducing an Adaptive Token
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Pruning module, our method can calculate the importance
score for vision tokens and determine the pruning threshold
dynamically. Based on Spatial Augmented Pruning strat-
egy, our method can prune redundant vision tokens and
maintain spatial modeling, while minimizing information
loss. In summary, our approach offers a promising solution
for flexible vision token pruning of LVLMs, making
them more scalable in resource constrained-environments.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, and et al. Flamingo: a visual language model
for few-shot learning, 2022. 2

[2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for un-
derstanding, localization, text reading, and beyond. arXiv
preprint arXiv:2308.12966, 2023. 1

[3] Sule Bai, Yong Liu, Yifei Han, Haoji Zhang, and Yansong
Tang. Self-calibrated clip for training-free open-vocabulary
segmentation. arXiv preprint arXiv:2411.15869, 2024.

[4] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell
Nye, Augustus Odena, Arushi Somani, and Sağnak Taşırlar.
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