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Language-Aware Vision Transformer for
Referring Segmentation

Zhao Yang*, Jiaqi Wang*, Xubing Ye*, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip H.S. Torr

Abstract—Referring segmentation is a fundamental vision-language task that aims to segment out an object from an image or video
in accordance with a natural language description. One of the key challenges behind this task is leveraging the referring expression
for highlighting relevant positions in the image or video frames. A paradigm for tackling this problem in both the image and the video
domains is to leverage a powerful vision-language (“cross-modal”) decoder to fuse features independently extracted from a vision
encoder and a language encoder. Recent methods have made remarkable advances in this paradigm by exploiting Transformers as
cross-modal decoders, concurrent to the Transformer’s overwhelming success in many other vision-language tasks. Adopting a different
approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic
and visual features in intermediate layers of a vision Transformer encoder network. Based on the idea of conducting cross-modal feature
fusion in the visual feature encoding stage, we propose a unified framework named Language-Aware Vision Transformer (LAVT), which
leverages the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way,
accurate segmentation results can be harvested with a light-weight mask predictor. One of the key components in the proposed system
is a dense attention mechanism for collecting pixel-specific linguistic cues. When dealing with video inputs, we present the video LAVT
framework and design a 3D version of this component by introducing multi-scale convolutional operators arranged in a parallel fashion,
which can exploit spatio-temporal dependencies at different granularity levels. We further introduce unified LAVT as a unified framework
capable of handling both image and video inputs, with enhanced segmentation capabilities for the unified referring segmentation task.
Our methods surpass previous state-of-the-art methods on seven benchmarks for referring image segmentation and referring video
segmentation. The code to reproduce our experiments is available at LAVT-RS.

Index Terms—Referring segmentation, language-aware vision Transformer, multi-modal understanding.

✦

I. Introduction

G iven an image or a sequence of images, and a text description
of the target object, referring segmentation aims at predicting

pixel-wise masks that delineate the object [1], [2], [3]. It yields
great value for various applications such as language-interfaced
human-robot interaction, image/video editing, and image/video
generation. In contrast to conventional single-modality visual seg-
mentation tasks, which are based on fixed category conditions [4],
[5], [6], referring segmentation has to deal with the much richer
vocabularies and syntactic varieties of human natural languages.
In this task, the target object is identified based on a free-form
expression, which uses words and phrases governed by syntactic
rules to describe entities, actions, positions, and other linguistic or
conceptual attributes. Therefore, the key challenge of this task is to
exploit visual features that are relevant to the given text conditions.

There has been a growing effort devoted to referring segmen-
tation over the past few years. A widely adopted paradigm in both
the image and the video domains is to first independently extract
vision and language features from different encoder networks,
and then fuse them together to make predictions with a cross-
modal decoder. Concretely, the fusion strategies include recurrent
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interaction [7], [8], cross-modal attention [9], [10], [11], [12],
[13], multi-modal graph reasoning [14], linguistic structure-guided
context modeling [15], dynamic filtering [3], capsule routing [16],
etc. Recent advances (e.g., [17], [18], and [19]) bring performance
improvements via employing a cross-modal Transformer [20]
decoder (illustrated in Fig. 1(a)) to learn more effective cross-
modal alignments, which is in concurrence with Transformer’s
overwhelming success in many other vision-language tasks [21],
[22], [23], [24].

Despite significant progress, the potential of the Transformer
to enhance referring segmentation is still far from fully explored.
Specifically, cross-modal interactions mainly happen after feature
encoding, and a cross-modal decoder is mostly responsible for
aligning the visual and linguistic features. As a result, previous
methods fail to effectively leverage the rich Transformer layers in
the encoder for excavating helpful multi-modal context. To address
these issues, a potential solution is to exploit a visual encoder
network for jointly embedding linguistic and visual features during
visual encoding.

Accordingly, we propose a Language-Aware Vision
Transformer (LAVT) network, in which visual features are
encoded together with linguistic features, being “aware” of their
relevant linguistic context at each spatial location. As shown
in Fig. 1(b), LAVT makes full use of the multi-stage design in a
modern vision Transformer backbone, leading to a hierarchical
language-aware visual encoding scheme. Specifically, we densely
integrate linguistic features with visual features via a Pixel-Word
Attention Module (PWAM). The beneficial vision-language cues
are then exploited by the following Transformer blocks, e.g., [25]
and [26], in the next encoder stage. This approach enables

https://github.com/Yxxxb/LAVT-RS
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Fig. 1. The task of referring segmentation takes an image or a sequence of images (a video) and text descriptions as inputs, and predicts a mask delineating
the object specified by the text in the image(s). (a) The previous state-of-the-art methods (i.e., VLT [17] for images and ReferFormer [19] for videos) leverage a
vision-language Transformer decoder for cross-modal feature fusion. (b) Conversely, we propose to directly integrate linguistic information with visual features in
intermediate levels of a vision Transformer network, where beneficial vision and language cues are jointly exploited. A light-weight mask predictor can therefore
readily replace the complicated cross-modal decoder used in previous approaches.

us to forgo a complicated cross-modal decoder, as accurate
segmentation results can be harvested from the language-aware
visual features via a lightweight mask predictor.

Moreover, we extend our proposed LAVT to the video domain.
We first show that LAVT can readily serve as a simple yet
effective baseline for the task of referring video segmentation, by
simply switching its image-based vision Transformer layers [25]
to the corresponding video-based version [26]. In order to better
integrate spatio-temporal and linguistic representations, we further
present an analogous framework named video LAVT, in which
the PWAM is extended to the 3D domain, leading to what we refer
to as the 3D PWAM. The 3D PWAM leverages multi-scale 3D
convolutions at several places within the module to extract spatio-
temporal information from the respective inputs. Such convolu-
tions are placed on top of visual features, linguistic features, and
integrated multi-modal features, the choices of which we carefully
validate through experiments. At each place, we consistently apply
the pairwise construct of two multi-scale convolutions placed
side-by-side, leading to an overall design that presents clarity
and conformity with the original PWAM. The dynamic nature
of videos presents a variety of challenges to the segmentation of
objects from language expressions, and in broad terms, effective
temporal information modeling can be a generic cure to such
challenges. Later in the experiment section, we illustrate several
common types of challenges that we observe and demonstrate the
efficacy of the video LAVT in addressing them via qualitative
analyses.

Building upon LAVT and video LAVT, we further propose a
framework named unified LAVT that is capable of processing both
image and video inputs. For the multi-level temporal outputs from
the visual encoding backbone of video LAVT, we supplement them
with static features of the image input. This enables unified LAVT
to handle temporal information more flexibly while enhancing its
modeling of local information. With this approach, both video and
image inputs can be processed with a single model, establishing a
unified framework.

To evaluate the effectiveness of the proposed methods, we

conduct a series of experiments on seven widely adopted bench-
mark datasets, including RefCOCO [27], RefCOCO+ [27], G-
Ref (UMD partition) [28], and G-Ref (Google partition) [29]
for referring image segmentation (RIS), and Refer-YouTube-
VOS [12], A2D Sentences [3], Ref-DAVIS-17 [30] and J-HMDB
Sentences [3] for referring video segmentation (RVS). Extensive
experimental results demonstrate the strong competitiveness of our
methods in relation to state-of-the-art approaches.

We summarize our contributions as follows.

• We propose LAVT, a Transformer-based referring image
segmentation framework that performs language-aware vi-
sual encoding in place of cross-modal fusion post feature
extraction.

• We propose video LAVT, the extended version of LAVT
for the referring video segmentation task, which exploits
spatio-temporal information for more effective multi-modal
information fusion for object segmentation in videos. Based
on this, we further propose unified LAVT, a framework
capable of handling both image and video inputs at the
same time, with enhanced segmentation capabilities.

• We show that the proposed “jointly-encode-and-align”
methodology is not only beneficial to the image task, but
works surprisingly well for videos, despite its simplicity. We
also demonstrate the scaling potential of this methodology
within unified LAVT on both unified tasks and larger
datasets.

• We obtain promising competitive results on three bench-
mark datasets for referring image segmentation and four
benchmark datasets for referring video segmentation,
demonstrating the effectiveness and generality of the pro-
posed methods. Source code is available at LAVT-RS.

It is to be noted that a preliminary conference version of this
work was initially presented in [31]. As an extension, we propose
the video LAVT framework for the referring video segmentation
task, enhancing the original PWAM by introducing multi-scale 3D
convolutional operators to better handle video data. We further

https://github.com/Yxxxb/LAVT-RS


3

propose the unified LAVT framework for the unified segmentation
tasks of RIS and RVS, enhancing the video backbone to improve
local static information modeling. The proposed Transformer-
based “jointly-encode-and-align” approach is a first not only in
the image domain but also in the video domain, and we show
that it performs very well despite its simplicity. Moreover, we
have conducted experiments on two other large-scale datasets for
referring video segmentation and demonstrated the effectiveness of
video LAVT. In this journal version, we more thoroughly validate
our proposed approaches and provide comprehensive analyses on
the experimental results, including detailed descriptions for the
construction of the 3D PWAM, more comprehensive ablation
studies, and additional visualization results.

II. Related Work
A. Referring Image Segmentation

Over the past years, referring image segmentation (RIS) has
attracted growing attention in the research community and there
are two main processes in conventional pipelines: (1) extracting
features from the text and image inputs respectively, and (2) fusing
the multi-modal features to predict the segmentation mask. In the
first process, previous methods adopt pre-trained language models
(e.g., based on recurrent neural networks [2], [7], [8], [32], [33] or
Transformers [34], [35]) to encode text inputs, and powerful vision
network architectures (e.g., plain fully convolutional networks [2],
[7], [36], DeeplabV3 [8], [34], [37], and DarkNet [33], [38], [39])
to encode visual inputs.

The multi-modal feature fusion module which joins the two
types of features is the key component that prior arts focus on.
For example, Hu et al. [2] propose the first baseline based on the
concatenation operation, which is improved by Liu et al. [7] with a
recurrent strategy. Shi et al. [9], Chen et al. [10], Ye et al. [40], and
Hu et al. [11] model cross-modal relations between language and
vision features via various attention mechanisms. Yu et al. [41] and
Huang et al. [14] explore the modular decomposition of language
for better capturing different concepts (e.g., categories, attributes,
relations, etc.) in multi-modal features, while Hui et al. [15] exploit
syntactic structures for guiding multi-modal context aggregation.

The methods most related to ours are VLT [17] and EFN [42],
where the former designs a Transformer decoder for fusing linguis-
tic and visual features, and the latter adopts a convolutional vision
backbone network for encoding language information. Different
from [17], we propose an early fusion scheme which effectively
exploits the Transformer encoder for modeling multi-modal context.
Compared to [42], we do not rely on a complicated cross-modal
decoder, leading to a clearer and more effective framework. Under
fair comparisons, our method outperforms these two previous
counterparts by large margins. The extended version of VLT [43]
proposes a Spatial-Dynamic Fusion (SDF) module and a masked
contrastive learning objective. The former (SDF) is very similar
to our proposed PWAM, with the main difference being that
after the pixel-word attention step, PWAM combines visual and
linguistic features via element-wise multiplication while SDF does
it via concatenation; the masked contrastive learning objective
is in principle a generic method applicable to many referring
segmentation networks: It operates based on the idea of pulling
close multi-modal features obtained from different expressions for
the same object, while pushing afar multi-modal features obtained
from different objects.

Most recently, more methods are developed in the direc-
tion of scaling up vision-language segmentation models, such as
SADLR [44], GRES [45], CGFormer [46], UNINEXT [47] and
PolyFormer [48]. SADLR [44] leverages a continuously updated
query as the representation of the target object to progressively learn
discriminative multi-modal features in the RIS task. GRES [45]
generalizes the RIS task to expressions referring to any number
of target objects, and introduces a new benchmark dataset along
with a novel region-based approach called ReLA. CGFormer [46]
proposes Group Transformer to achieve object-aware cross-modal
reasoning by grouping visual features into different regions and
modeling their dependencies, conditioning on linguistic features.
The UNINEXT [47] model unifies a wide variety of object-centric
visual understanding tasks under a prompt-conditional object dis-
covery paradigm, while the PolyFormer [48] model formulates
RIS and referring expression comprehension as a sequence-to-
sequence prediction problem. Their contributions lie in proposing
large, unified frameworks or systems that can handle multiple tasks
simultaneously, fueled by large-scale paired multi-modal training
data. In contrast, we focus on demonstrating the efficacy of the early
fusion of language and vision features in a segmentation-oriented
framework, while also proposing a simple but effective mechanism
to achieve this goal.

B. Referring Video Segmentation

Unlike referring image segmentation, referring video segmen-
tation requires segmenting out the target object in each frame of a
video where the object is present, and therefore, poses the additional
challenge of temporal information modeling to methods.

Inspired by the problem’s link to actor-action segmentation
in videos [49] (the difference being that the actors and actions
are described by language rather than fixed categories), many
methods exploit 3D convolutional neural networks (e.g., C3D [50],
I3D [51], and P3D [52]) as visual encoders for addressing temporal
information modeling [3], [13], [53], [54]. Different from 2D
convolutions, 3D convolutions can detect features that span a period
of time, which is conducive to action understanding (e.g., running,
jumping, kicking, etc.) in videos, but may at the same time introduce
spatial misalignment into the features, which affects the spatial
accuracy of segmentation [18], [55].

With the purpose of improving the temporal consistency of
predictions, another line of work instead approaches temporal
modeling from the perspective of correspondence learning, as is
frequently done for video object segmentation and tracking. Among
methods that follow this approach, Seo et al. [12] leverage the
space-time attention network [56] to fuse features from history
frames with those from the current frame, while Khoreva et al. [30]
establish temporal tracks of predictions based on certain measures
of temporal consistency among those predictions. These methods
can typically benefit from multiple rounds of refinement at inference
time.

Observing that sometimes modeling temporal information may
be at odds with preserving fine spatial details, as is the case with
3D convolutional networks, some methods explore complementary
ways to utilize these two types of signals. For instance, Hui et
al. [55] encode both 3D and 2D convolutional features in parallel
branches, which are joined after having been fused with language
features respectively. Ding et al. [57] adopt a similar approach, but
instead encode 2D convolutional features of the current frame and
its difference with a previous frame.
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Fig. 2. The overall pipeline of the proposed LAVT. We leverage a hierarchical vision Transformer [25] to perform language-aware visual encoding. At each
stage, visual feature maps 𝑉𝑖 , 𝑖 ∈ {1, 2, 3, 4} are encoded from the corresponding stage of Transformer layers (which are described in Section III-A-1 and for
diagrammatic clarity, are not illustrated in this figure). Then 𝑉𝑖 are used as queries for generating a set of position-specific language feature maps 𝐹𝑖 , 𝑖 ∈ {1, 2, 3, 4}
in the pixel-word attention module (Section III-A-2). Next, we adaptively fuse 𝐹𝑖 with the original 𝑉𝑖 via a language pathway (Section III-A-3). The new visual
feature maps 𝐸𝑖 , 𝑖 ∈ {1, 2, 3} are then passed into the next stage of Transformer layers for further processing. A standard segmentation head (Section III-A-4)
produces the final segmentation output.

Aside from temporal modeling, another focus in the recent lit-
erature is to develop Transformer-based multi-modal feature fusion
mechanisms for fusing linguistic and visual features [18], [19], [58],
[59], which achieve strong performance. After visual and linguistic
feature extraction, the idea is to employ the Transformer encoder-
decoder architecture [20] equipped with learnable queries [60] to
join these two types of features. One of the key differences among
these methods lies in the choices for the query, key, and value
in the decoder. Due to space constraints, we refer readers to the
original papers for details. One potential drawback of this type of
approaches lies in the overall complexity of the systems, which may
involve exceedingly many components and the complicated process
of instance sequence matching.

Recently, there has been a series of work focusing on the
implementation of comprehensive feature interaction and alignment
in the field of computer vision. SgMg [58] illustrates how existing
referring video segmentation methods suffer from the feature drift
problem and proposes Spectrum-guided Cross-modal Fusion to
encourage intra-frame global interactions in the spectral domain.
TempCD [59] proposes a novel collection-distribution mechanism
to encourage interactions between the referent token and object
queries. DMFormer [61] explicitly couples visual features with
different syntactic parts of the text to promote more comprehensive
feature interactions. HTML [62] effectively aligns linguistic and
visual features to identify core object semantics in video by learning
multimodal interactions hierarchically across different temporal
scales.

Unlike state-of-the-art video-specific or video-capable ap-
proaches [18], [19], [43], [48], which primarily rely on additional
multi-modal feature fusion components to learn vision-language
alignments, our proposed video LAVT essentially converts the
vision Transformer backbone into a multi-modal feature encoder
that jointly processes linguistic and visual features.

C. Transformers
The Transformer architecture is first introduced for the task

of neural machine translation [20] and has since dominated the
natural language processing (NLP) field [35], [63], [64] due to its
strong capability of global context modeling. More recently, it has

achieved great success on various computer vision tasks, e.g., image
classification [25], [65], [66], action recognition [26], [67], object
detection [25], [60], [68], and semantic segmentation [25], [69],
[70].

There has also been a rich line of work on Transformers in
the intersection area of computer vision and NLP [71], [72]. For
example, Radford et al. devise a large-scale pretraining model,
named CLIP [21], which applies contrastive learning [73], [74],
[75] on features learned by a vision Transformer and a language
Transformer. Hu et al. [22] propose a Unified Transformer (UniT)
model that jointly learns multiple vision-language tasks across
different domains. Besides, growing effort has been devoted to
other tasks such as visual question answering [23] and text-to-video
retrieval [24]. However, to the best of our knowledge, there have
been very few attempts on designing a unified Transformer model
for the task of referring segmentation.

III. Method
In this section, we start with the introduction of our language-

aware vision Transformer (LAVT) for image segmentation (illus-
trated in Fig. 2) in Section III-A, and then discuss its 3D counterpart
for video segmentation in Section III-B, to which we refer as
video LAVT (illustrated in Fig. 5(a)). The fundamental workings of
both models involve a process of language-aware visual encoding,
which we introduce in Section III-A-1. It is achieved via a pixel-
word attention module and a language pathway, which we detail
in Sections III-A-2 and III-A-3, respectively. Then in Section III-
A-4, we describe the light-weight mask predictor used to obtain
final results. In video LAVT, the vision Transformer layers and the
pixel-word attention module are modified to enhance the model’s
ability to capture spatio-temporal information, and we clarify these
changes in Sections III-B-1 and III-B-2. Finally, in Section III-B-3,
we provide details on the proposed unified LAVT.

A. LAVT for Referring Image Segmentation
1) Language-Aware Visual Encoding: Given an input pair of

an image and a natural language expression that specifies an object
from the image, our model outputs a pixel-wise mask that delineates
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Fig. 3. Pipeline of the pixel-word attention module (PWAM). First, a single-
head scaled dot-product attention [20] is performed using the input visual feature
maps 𝑉𝑖 as queries and the input linguistic feature maps 𝐿 as keys and values.
The result, 𝐺𝑖 , is a set of linguistic feature maps of the same spatial size as 𝑉𝑖 .
𝐺𝑖 is then multiplied element-wise with a projection of the input visual feature
maps 𝑉𝑖𝑚, followed by another projection before final output.

the object. To extract language features, we employ a deep language
representation model to embed the input expression into high-
dimensional word vectors. We denote the language features as
𝐿 ∈ R𝐶𝑙×𝑁 , where 𝐶𝑙 and 𝑁 denote the number of channels and
the number of words, respectively.

After obtaining the language features, we perform joint visual
feature encoding and vision-language (which is also called “cross-
modal” or “multi-modal” in the following content) feature fusion
through a hierarchy of vision Transformer layers organized into
four stages. We index each stage using 𝑖 ∈ {1, 2, 3, 4} in the
bottom-up direction. Each stage employs a stack of Transformer
encoding layers (with the same output size) 𝜙𝑖 , a multi-modal
feature fusion module 𝜃𝑖 , and a learnable gating unit𝜓𝑖 . Within each
stage, language-aware visual features are generated and refined via
three steps. First, the Transformer layers 𝜙𝑖 take the features from
the previous stage as input, and output enriched visual features,
denoted as 𝑉𝑖 ∈ R𝐶𝑖×𝐻𝑖×𝑊𝑖 . Then, the output visual features 𝑉𝑖
are combined with language features 𝐿 via the multi-modal feature
fusion module 𝜃𝑖 to produce a set of multi-modal features, denoted
as 𝐹𝑖 ∈ R𝐶𝑖×𝐻𝑖×𝑊𝑖 . Finally, each element in 𝐹𝑖 is rescaled by
the learnable gating unit 𝜓𝑖 and then added element-wise to 𝑉𝑖 to
produce a set of enhanced visual features embedded with linguistic
information, which we denote as 𝐸𝑖 ∈ R𝐶𝑖×𝐻𝑖×𝑊𝑖 . We refer to the
computations in this final step as the language pathway. Here, 𝐶𝑖 ,
𝐻𝑖 , and𝑊𝑖 denote the number of channels, the height, and the width
of feature maps in the 𝑖-th stage, respectively.

The four stages of Transformer encoding layers correspond
to the four stages in a Swin Transformer [25], which is an
efficient hierarchical vision backbone designed for addressing dense
prediction tasks. The multi-modal feature fusion module within
each stage is our proposed pixel-word attention module (PWAM),
which is designed with the aim to densely align linguistic meanings
with visual cues. And the gating unit is what we refer to as the
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Fig. 4. The schema of the language pathway, which leverages a language gate
(LG) for modulating multi-modal information flow. LG is implemented as a
two-layer perceptron.

language gate (LG), a special unit that we devise for regulating the
flow of linguistic information along the language pathway (LP).

2) The Pixel-Word Attention Module: In order to separate a
target object from its background, it is important to align the visual
and linguistic representations of the object across modalities. One
general approach is to combine the representation of each pixel
with the representation of the referring expression, and learn multi-
modal representations that are discriminative of a “referent” class
and a “background” class. Previous approaches have developed
various mechanisms for addressing this challenge, including dy-
namic convolutions [76], concatenations [2], [8], [76], cross-modal
attentions [9], [11], [40], [42], [77], graph neural networks [54],
etc. Compared to most of the previous cross-modal attention
mechanisms [9], [11], [40], [42], [77], our pixel-word attention
module (PWAM) produces a much smaller memory footprint as
it avoids computing attention weights between two image-sized
spatial feature maps, and is also simpler due to fewer attention
steps.

Fig. 3 illustrates PWAM schematically. Given the input visual
features𝑉𝑖 ∈ R𝐶𝑖×𝐻𝑖×𝑊𝑖 and linguistic features 𝐿 ∈ R𝐶𝑙×𝑁 , PWAM
performs multi-modal fusion in two steps, as described below. First,
at each spatial location, PWAM aggregates the linguistic features 𝐿
across the word dimension to generate a position-specific, sentence-
level feature vector, which collects linguistic information most
relevant to the current local neighborhood. This step generates a
set of spatial feature maps, 𝐺𝑖 ∈ R𝐶𝑖×𝐻𝑖×𝑊𝑖 . Concretely, we obtain
𝐺𝑖 as follows

𝑉𝑖𝑞 = flatten(𝜔𝑖𝑞 (𝑉𝑖)), (1)
𝐿𝑖𝑘 = 𝜔𝑖𝑘 (𝐿), (2)
𝐿𝑖𝑣 = 𝜔𝑖𝑣 (𝐿), (3)

𝐺′
𝑖 = softmax(

𝑉𝑇
𝑖𝑞
𝐿𝑖𝑘

√
𝐶𝑖

)𝐿𝑇
𝑖𝑣 , (4)

𝐺𝑖 = 𝜔𝑖𝑤 (unflatten(𝐺′𝑇
𝑖 )), (5)

where 𝜔𝑖𝑞 , 𝜔𝑖𝑘 , 𝜔𝑖𝑣 , and 𝜔𝑖𝑤 are projection functions. Each of
the language projections 𝜔𝑖𝑘 and 𝜔𝑖𝑣 is implemented as a 1×1
convolution with 𝐶𝑖 number of output channels. And the query
projection 𝜔𝑖𝑞 and the final projection 𝜔𝑖𝑤 each is implemented
as a 1×1 convolution followed by instance normalization, with 𝐶𝑖

number of output channels. Here, ‘flatten’ refers to the operation
of unrolling the two spatial dimensions into one dimension in row-
major, C-style order, and ‘unflatten’ refers to the opposite operation.
These two operations and transposing are used to transform feature
maps into proper shapes for calculation. (1) to (5) implement the
scaled dot-product attention [20] using visual features 𝑉𝑖 as the
query and linguistic features 𝐿 as the key and the value, with
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(a) Video LAVT. (b) 3D PWAM.
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Fig. 5. (a) The pipeline of video LAVT is similar to that of LAVT. 𝑉𝑖 , 𝑖 ∈ {1, 2, 3, 4} represents features encoded by Video Swin Transformer [26] layers,
and 3D PWAMs instead of PWAMs are used for producing the multi-modal features, 𝐹𝑖 , 𝑖 ∈ {1, 2, 3, 4}, which are sent to the next stage of Transformer layers
along with 𝑉𝑖 . The language gate and segmentation head remain unchanged, with the input features’ temporal dimension rolled into the batch dimension. (b) The
pipeline of the 3D PWAM. For each of the spatial projection functions in PWAM, 𝜔𝑚, 𝜔𝑞 , 𝜔𝑤 , and 𝜔𝑜 , we substitute its 1 × 1 convolution with a 3 × 3 × 3
convolution and a 1 × 1 × 1 convolution placed side by side, with their outputs joined by addition (illustrated in blue dashed boxes). This allows the modeling of
spatio-temporal information when fusing linguistic and visual information. Note that we have omitted the stage index 𝑖 from the notations of projection functions.
More details are in the text below.

instance normalization [78] after linear transformation in the query
projection function 𝜔𝑖𝑞 and the output projection function 𝜔𝑖𝑤 .

Second, after obtaining the linguistic features𝐺𝑖 which have the
same shape as𝑉𝑖 , we combine them to produce a set of multi-modal
feature maps 𝐹𝑖 via element-wise multiplication. Specifically, this
step is described as follows

𝑉𝑖𝑚 = 𝜔𝑖𝑚 (𝑉𝑖), (6)
𝐹𝑖 = 𝜔𝑖𝑜 (𝑉𝑖𝑚 ⊙ 𝐺𝑖), (7)

where ⊙ denotes element-wise multiplication and 𝜔𝑖𝑚 and 𝜔𝑖𝑜 are
a visual projection and a final multi-modal projection, respectively.
Each of the two functions is implemented as a 1×1 convolution
followed by ReLU [79] nonlinearity.

3) Language Pathway: As described earlier, at each stage,
we merge the output from PWAM, 𝐹𝑖 , with the output from
the Transformer layers, 𝑉𝑖 . We refer to the computations in this
merging operation as the language pathway. In order to prevent
𝐹𝑖 from overwhelming the visual signals in 𝑉𝑖 and to allow an
adaptive amount of linguistic information flowing to the next stage
of Transformer layers, we design a language gate which learns a set
of element-wise weight maps based on 𝐹𝑖 to rescale each element
in 𝐹𝑖 . The language pathway is schematically illustrated in Fig. 4
and mathematically described as follows

𝑆𝑖 = 𝛾𝑖 (𝐹𝑖), (8)
𝐸𝑖 = 𝑆𝑖 ⊙ 𝐹𝑖 +𝑉𝑖 , (9)

where ⊙ indicates element-wise multiplication and 𝛾𝑖 is a two-layer
perceptron, with the first layer being a 1×1 convolution followed
by ReLU [79] nonlinearity and the second layer being a 1×1
convolution followed by a hyperbolic tangent function. As detailed
in the ablation studies in Table VI, we have experimented with
and without using a language gate along the language pathway, as

well as different final nonlinear activation functions in the language
gate, and found that using the gate with 𝑡𝑎𝑛ℎ final nonlinearity
works the best for our model. The summation operation in (9)
is an effective way of utilizing pre-trained vision Transformer
layers for multi-modal embedding, as the treatment of multi-modal
features as “supplements” (or “residuals”) avoids disrupting the
initialization weights obtained from pre-training on visual data.
We have observed much worse results in the case of adopting
replacement or concatenation.

4) Segmentation: We combine the multi-modal feature maps,
𝐹𝑖 , 𝑖 ∈ {1, 2, 3, 4}, in a top-down manner to exploit multi-scale
semantics for final segmentation. The decoding process can be
described by the following recursive function{

𝑌4 = 𝐹4,

𝑌𝑖 = 𝜌𝑖 ( [𝜐(𝑌𝑖+1); 𝐹𝑖]), 𝑖 = 3, 2, 1. (10)

Here ‘[ ; ]’ denotes feature concatenation along the channel
dimension, 𝜐 represents upsampling via bilinear interpolation, and
𝜌𝑖 is a projection function implemented as two 3×3 convolutions
connected by batch normalization [80] and ReLU [79] nonlinearity.
The final feature maps, 𝑌1, are projected into two class score maps
via a 1×1 convolution, representing the “background” class and the
“object” class respectively. The average Dice loss [81] on these two
classes is used for training the model. More details are in Section III-
C

B. LAVT for Referring Video Segmentation
1) Language-Aware Visual Encoding for Videos: The overall

pipeline of video LAVT is illustrated schematically in Fig. 5(a).
Given a video clip of 𝑇 frames and the referring expression, our
task is to embed language information with video content and
predict a mask that delineates the target object in each frame of the
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TABLE I
Design Choices for the 3D PWAM

𝜔𝑚 𝜔𝑞 𝜔𝑤 𝜔𝑜

1 1×1×1 1×1×1 1×1×1 1×1×1
2 3×1×1 3×1×1 1×1×1 1×1×1
3 1×3×3 1×3×3 1×1×1 1×1×1
4 3×3×3 3×3×3 1×1×1 1×1×1
5 3×1×1 ◦ 1×3×3 3×1×1 ◦ 1×3×3 1×1×1 1×1×1
6 3×1×1 + 1×3×3 3×1×1 + 1×3×3 1×1×1 1×1×1
7 3×3×3 + 1×1×1 3×3×3 + 1×1×1 1×1×1 1×1×1
8 3×3×3 ; 1×1×1 3×3×3 ; 1×1×1 1×1×1 1×1×1

9 3×3×3 3×3×3 3×3×3 3×3×3
10 3×3×3 + 1×1×1 3×3×3 + 1×1×1 3×3×3 + 1×1×1 1×1×1
11 3×3×3 + 1×1×1 3×3×3 + 1×1×1 1×1×1 3×3×3 + 1×1×1

12 (*) 3×3×3 + 1×1×1 3×3×3 + 1×1×1 3×3×3 + 1×1×1 3×3×3 + 1×1×1
‘𝑎×𝑏×𝑐’ denotes kernel sizes in the time, height, and width directions, respectively. ‘ 𝑓 ◦𝑔’
denotes that function 𝑓 accepts the output of function 𝑔 as the input. Diagrammatically, this
means that 𝑓 is placed on top of 𝑔 (see Fig. 6(a)). We use ‘ 𝑓 ; 𝑔’ to denote the concatenation
of the outputs of 𝑓 and 𝑔 followed by channel reduction, and ‘ 𝑓 + 𝑔’ to denote the addition
of the outputs of 𝑓 and 𝑔. Asterisk denotes the final design of the 3D PWAM.

input clip. Our language-aware visual encoding scheme described
in Section III-A-1 for images is readily applicable for this purpose
with some small modifications.

The simplest approach which constitutes a naı̈ve version of
video LAVT is to change the Swin Transformer layers [25], denoted
as 𝜙𝑖 in Section III-A-1, to the Video Swin Transformer layers
in [26]. Concretely, the windows in each Transformer layer that
introduce locality to attention are changed from 2D spatial windows
to 3D spatio-temporal cubes. In these new Transformer layers,
correspondences are established between nodes residing in not
only spatial neighborhoods but also adjacent time steps, which
enables temporal information modeling. With this approach, the
pixel-word attention module (PWAM) and the language pathway
(LP) described earlier in effect do not have to be modified in order to
work within the new framework, as 1×1 convolutions are equivalent
to linear layers and it would only require proper tensor reshaping
operations to accommodate the new temporal dimension in the
tensors. For instance, given 𝑉𝑖 and 𝐹𝑖 in R𝐶𝑖×𝑇×𝐻𝑖×𝑊𝑖 , we roll
the temporal and spatial dimensions into one dimension and apply
linear layers in place of 1×1 convolutions.

Despite that, it makes sense for us to consider extending PWAM
with the ability to model spatio-temporal information as it learns
to establish multi-modal correspondences and produce integrated
features. In the following section, we will introduce our extension
of PWAM, where effort is devoted to making the module more apt
for processing video inputs and 3D convolutions are exploited to
this end.

2) The 3D Pixel-Word Attention Module: Fig. 5(b) illustrates
the extended 3D pixel-word attention module (3D PWAM) schemat-
ically, where 3D convolutions with kernel size 3×3×3 are “inserted”
next to 1×1×1 convolutions at several places, forming two parallel
paths at each place with the outputs joined via element-wise
addition. The places are chosen where there was a 1×1 convolution
in the original PWAM that transformed spatial feature maps, i.e.,
𝑉𝑖 , 𝐺′

𝑖
, and𝑉𝑖𝑚⊙𝐺𝑖 , which correspond to the visual features output

by the Transformer layers, the aggregated linguistic features from
the attention step, and the multi-modal features after element-wise
multiplication, respectively. Correspondingly, the new projection
functions for these features, denoted as 𝜔𝑚, 𝜔𝑞 , 𝜔𝑤 , and 𝜔𝑜,
with stage index omitted, are now each represented by side-by-side
3×3×3 and 1×1×1 convolutions followed by addition, in contrast
to the 1×1 convolution in the original PWAM. In this way, multi-

3x3x3 1x1x1

+

(c) Parallel - addition (3x3x3 + 1x1x1).

(b) Parallel - concatenation (3x3x3 ; 1x1x1).

(a) Sequential (3x1x1 ○ 1x3x3).
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Fig. 6. Schematic illustration for several different constructions (left) of the
projection functions in 3D PWAM (right). The constructs (a), (b), and (c) are
used in structure 5, structure 8, and structures 7, 10, 11, and 12 in Table I,
respectively. The stage index 𝑖 is omitted from the notations of projection
functions. More discussions about the reasons for their consideration are in
the text above.

scale spatio-temporal information may be extracted and utilized.
Nonlinearity and normalization in the functions stay unchanged
from those in PWAM.

The 3×3×3 convolutions detect spatio-temporal features from
the input, and we may wonder if reinforcing either temporal (e.g.,
3×1×1) or spatial (e.g., 1×3×3) information in the input might
suffice. In addition, it remains open questions that (1) whether it
suffices to use only 3×3×3 convolutions without adding 1×1×1
convolutions to the side, and (2) whether it is actually helpful to
model spatio-temporal information in the linguistic features 𝐺′

𝑖

and multi-modal features 𝑉𝑖𝑚 ⊙ 𝐺𝑖 (while this appears natural
for visual features 𝑉𝑖). In Table I, we list such alternative struc-
tures of 3D PWAM that could potentially work; in Table VII
and Section IV-C-2, we report our empirical findings for them.
Across structures 1 to 5, we focus on comparing different types of
convolutions, i.e., “element-wise” (an element being a pixel feature
vector) convolution, temporal convolution, spatial convolution,
spatio-temporal convolution, and sequentially decomposed spatio-
temporal convolutions, respectively. In structures 6 to 8, we explore
the options of two differently sized convolutions placed side by side
with outputs joined by addition or concatenation, the rationale being
that the two convolutions may capture complementary information.
And in structures 9 to 12, based on our previous discoveries,
we verify that whether it is necessary to model spatio-temporal
information in the linguistic features (𝐺′

𝑖
, using 𝜔𝑤) and/or multi-

modal features (𝑉𝑖𝑚 ⊙ 𝐺𝑖 , using 𝜔𝑜).
3) Unified LAVT for Referring Segmentation: Fig. 7 illustrates

the pipeline of the unified LAVT schematically. In the figure,
𝐸𝑖 ∈ R𝐶𝑖×𝑇×𝐻𝑖×𝑊𝑖 represents the output features of each encode-
and-align stage, corresponding to 𝐸1, 𝐸2 and 𝐸3 of video LAVT
demonstrated in Fig. 5(a); the ‘Video Swin Transformer Module’
represents the spatio-temporal encoding block in video LAVT. To
simultaneously enhance the modeling of temporally local informa-
tion, we extract the central frame features 𝐸𝑐𝑖 ∈ R𝐶𝑖×1×𝐻𝑖×𝑊𝑖 from
the visual features 𝐸𝑖 , and feed them to a 2D Swin Transformer
block that functions as the local modeling module. This process
runs in parallel with spatio-temporal visual encoding. Therefore,
the encoding stage forms two parallel paths: one for spatio-temporal
information encoding and the other for local information encoding.
The outputs, 𝑉𝑐𝑖+1 and 𝑉𝑡𝑖+1, are then combined via element-wise
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Fig. 7. The encoding stage of our proposed unified LAVT. 𝐸𝑖 , 𝑖 ∈ {1, 2, 3},
represents the output features of each encode-and-align stage, corresponding
to 𝐸1, 𝐸2 and 𝐸3 of video LAVT in Fig. 5(a). It’s worth noting that when
conducting inference with the unified LAVT, we employ a single-stream
network architecture. Specifically, for images, we exclusively utilize the 2D
Swin Transformer module as the visual encoding module. Likewise, for videos,
we rely solely on the Video Swin Transformer module.

addition. It’s worth noting that when conducting inference with the
unified LAVT, we employ a single-stream network architecture.
Specifically, for the image segmentation, we exclusively utilize
the 2D Swin Transformer module as the visual encoding module.
Likewise, for video segmentation, we rely solely on the Video Swin
Transformer module. For the subsequent cross-modal information
fusion, we retain the design of the 3D PWAM and the language
gate.

C. Implementation
We implement our method in PyTorch [82] and use the BERT

implementation from HuggingFace’s Transformer library [83]. The
Transformer layers in LAVT are initialized with weights pre-trained
on ImageNet-22K [84] from the Swin Transformer [25], and those
in video LAVT are initialized with weights pre-trained on Kinetics
400 [85] and ImageNet-1K [84] from the Video Swin Trans-
former [26]. Our language encoder is the base BERT model [86]
with 12 layers and hidden size 768 (hence 𝐶𝑡 in Section III is 768)
and is initialized using pre-trained weights from HuggingFace. The
rest of weights in our model are randomly initialized. The number
of channels 𝐶𝑖 in Section III is 512. The main loss used to optimize
LAVT, video LAVT, and all ablation/reference models is a multi-
class Dice loss. The original Dice loss [81] is a binary segmentation
loss computed over a single class score map. As our model outputs
two class score maps, one for the “object” class and the other for
the “background” class, we compute the average Dice loss for the
two classes. To enhance the boundary accuracy of the predictions,
when training some of the video LAVT models, we additionally
adopt a boundary loss [87], which penalizes the misalignment of
boundaries.

For training LAVT, we adopt the AdamW [88] optimizer with
weight decay 0.01 and initial learning rate 5e-5 with polynomial
learning rate decay. We train our model on each dataset for 40
epochs with batch size 32. We iterate through each object (while
randomly sampling one referring expression for it) exactly once
in an epoch. Images are resized to 480×480 and no data aug-
mentation techniques are applied. During inference, 𝑎𝑟𝑔𝑚𝑎𝑥 along
the channel dimension of the score maps are used as predictions.
Besides, for fair comparison with methods (i.e. UNINEXT [47]
and PolyFormer [48]) that train on scaled data, we further trained
LAVT and these methods with augmented data. Please see the
supplementary materials for more details.

For training video LAVT, we adopt the same optimizer with
weight decay 0.01 and initial learning rates 4e-5 and 6e-5, with

polynomial learning rate decay for Refer-YouTube-VOS and A2D
Sentences, respectively. We conduct the experiments for video
LAVT under both a “train-from-scratch” setting and a “pretrain-
then-finetune” setting, following the approach of ReferFormer [19].
For training unified LAVT, we also adopt the AdamW optimizer,
with weight decay 0.01 and initial learning rate 4e-5 with poly-
nomial learning rate decay on the Refer-YouTube-VOS dataset. In
addition to the “pretrain-then-finetune” setting, unified LAVT is
further trained in a “jointly-train” setting, where data from Ref-
Youtube-VOS and RefCOCO are mixed for training. More details
can be found in the supplementary materials.

IV. Experiments
A. Datasets and Metrics

Referring Image Segmentation: We evaluate our method
on three standard benchmark datasets, RefCOCO [27], Ref-
COCO+ [27], and G-Ref [28], [29]. Images in the three datasets are
collected from the MS COCO dataset [4] and annotated with natural
language expressions. Each of RefCOCO, RefCOCO+, and G-Ref
contains 19,994, 19,992, and 26,711 images, with 50,000, 49,856,
and 54,822 annotated objects and 142,209, 141,564, and 104,560
annotated expressions, respectively. Expressions in RefCOCO and
RefCOCO+ are very succinct (containing 3.5 words on average).
In contrast, expressions in G-Ref are more complex (containing
8.4 words on average), which makes the dataset more challenging.
Conversely, RefCOCO and RefCOCO+ tend to have more objects
of the same category per image (3.9 on average) compared to G-Ref
(1.6 on average), therefore, they can better evaluate an algorithm’s
ability to comprehend instance-level details. RefCOCO+ bans the
use of location words in its expressions, therefore, the model can
only make predictions based on appearance information. Addition-
ally, there are two different partitions of the G-Ref dataset, one
by UMD [28] and the other by Google [29]. We report results on
both. Ambiguities and foul language can occasionally be found in
the expressions of these datasets, and we hope that there will be
collective effort from the community to address these issues in the
future.

We adopt the common metrics of overall intersection-over-
union (oIoU), mean intersection-over-union (mIoU), and precision
at the 0.5, 0.7, and 0.9 threshold values. The overall IoU is measured
as the ratio between the total intersection area and the total union
area of all test samples, each of which is a language expression and
an image. This metric favors large objects. The mean IoU is the
IoU between the prediction and ground truth averaged across all
test samples. This metric treats large and small objects equally. The
precision metric measures the percentage of test samples that pass
an IoU threshold.

Referring Video Segmentation: We conduct experiments on
four challenging referring video segmentation benchmarks, Refer-
YouTube-VOS [12], Ref-DAVIS17 [30], A2D Sentences [3], and
J-HMDB Sentences [3]. Refer-YouTube-VOS is based on the
YouTube-VOS dataset [6], and contains roughly 4K videos, 7K
unique objects, and 15K language expressions. There are 3,471
videos for training and 202 videos for validation. We train our
model on the training set and evaluate it on the validation set using
the official evaluation server. The J-HMDB Sentences [3] dataset is
augmented from the J-HMDB [90] dataset with annotated sentences
and it contains 928 videos of 21 actions. The A2D Sentences
dataset is extended from the Actor-Action Dataset (A2D) [49] with
language expressions annotated for the 43 actor-action categories in
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TABLE II
Comparison with State-of-the-Art Methods in Terms of Overall IoU on Three Benchmark Datasets

Method Visual Language RefCOCO RefCOCO+ G-Ref
Encoder Model val test A test B val test A test B val (U) test (U) val (G)

“train with separate data”
CMPC [14] ResNet101 LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - - 49.05
LSCM [15] ResNet101 LSTM 61.47 64.99 59.55 49.34 53.12 43.50 - - 48.05
CMPC+ [54] ResNet101 LSTM 62.47 65.08 60.82 50.25 54.04 43.47 - - 49.89
MCN [39] Darknet-53 Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
EFN [42] ResNet101 Bi-GRU 62.76 65.69 59.67 51.50 55.24 43.01 - - 51.93
BUSNet [89] ResNet101 Self-Att 63.27 66.41 61.39 51.76 56.87 44.13 - - 50.56
CGAN [77] Darknet-53 Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
LTS [33] Darknet-53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
VLT [17] Darknet-56 Bi-GRU 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
LTS [33] Swin-B BERT 69.51 72.39 65.98 59.17 65.30 52.92 60.03 59.71 57.89
EFN [42] Swin-B BERT 71.32 72.47 66.17 59.62 64.87 52.90 60.31 60.76 58.22
VLT [17] Swin-B BERT 70.94 73.07 66.01 60.42 64.28 52.47 60.23 61.52 57.52
LAVT [31] + VLT [17] Swin-B BERT 71.55 73.82 67.03 61.28 65.87 53.62 61.11 62.37 58.16
LAVT [31] + SADLR [44] Swin-B BERT 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16
LAVT [31] Swin-B BERT 73.50 75.97 69.33 63.79 69.79 56.49 64.02 64.49 61.31
“train with augmented data”
PolyFormer [48] Swin-B BERT 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05 -
PolyFormer* [48] Swin-B BERT 72.10 74.48 69.20 65.31 70.58 58.24 65.17 66.82 64.11
UNINEXT* [47] ConvNeXt-L BERT 76.35 78.21 73.86 67.24 71.97 59.82 70.25 71.09 67.64
LAVT* Swin-B BERT 79.18 80.68 75.35 71.71 75.64 64.25 72.11 74.57 69.76
unified LAVT† Swin-B BERT 79.32 81.27 75.98 71.82 75.16 65.34 72.82 73.93 68.43

U: The UMD partition. G: The Google partition. We refer to the language model as neural networks that transform word embeddings before multi-modal feature fusion. Readers can
refer to the respective papers for details. * means employing the same augmented data for training. † indicates that model is jointly trained on Refer-YouTube-VOS and Ref-COCO. We
exclusively utilize Swin-B as the backbone during inference with the unified LAVT.

TABLE III
Comparison Between the Proposed LAVT, LTS, VLT, and EFN on the

RefCOCO Validation Set, Where All Models Use the Same
Backbone, Language Model, and Training Recipes (e.g., the

Multi-Class Dice Loss)

Method P@0.5 P@0.7 P@0.9 oIoU mIoU
LTS (Swin-B+BERT) [33] 81.14 69.84 26.25 69.51 70.99
EFN (Swin-B+BERT) [42] 84.78 74.54 28.39 71.32 73.71
VLT (Swin-B+BERT) [17] 84.34 73.85 25.04 70.94 72.94
LAVT + VLT [17] 84.89 74.28 23.67 71.55 73.08
LAVT 85.87 76.64 35.30 73.50 75.41

A2D. It contains 6,656 sentences describing 6,656 unique objects.
There are 3,036 videos for training and 746 videos for testing.
We train our model on the training set and evaluate it on the
test set. Ref-DAVIS17 [30] extends DAVIS17 [91] with language
descriptions for the objects and it contains 90 videos. For A2D
Sentences, we report the aforementioned metrics of precision at
five IoU thresholds (from 0.5 to 0.9 with 0.1 increments), overall
IoU, and mean IoU. For J-HMDB Sentences, we report overall
IoU and mean IoU. For Refer-YouTube-VOS and Ref-DAVIS17, we
report the mean region similarity J , which is the same as the mean
IoU defined above, and the mean contour accuracy F , which is the
mean F-measure defined over contour points from the predictions
and the ground truths.

We want to note that another common metric on the A2D
Sentences dataset, which is the mean Average Precision (mAP)
following COCO definition [4], is not particularly suitable for
evaluating “semantic segmentation-style” models, which employ a
convolutional classifier to produce a single mask for the entire image
or frame. The convolutional approach is valid because currently
any frame in A2D Sentences that doesn’t have a ground-truth mask
is ignored during evaluation (a standard practice established by
state-of-the-art methods such as CMPC+ [54], MTTR [18], and
ReferFormer [19]), thus, every frame encountered during evalua-

tion contains one and only one target object given the referring
expression. For methods that produce multiple mask candidates for
an object, mAP is meaningful as it ranks the confidence scores
associated with these masks, which are required for the models
to produce the final prediction. For semantic segmentation-style
methods, however, as they do not predict multiple candidates nor
do they have confidence scores for these candidates, it can be unclear
or ambiguous to try to adopt the mAP metric. For this reason, we
leave this metric out.

B. Comparison with Others
Referring Image Segmentation: In Table II, we evaluate LAVT

against the state-of-the-art referring image segmentation methods
on the RefCOCO [27], RefCOCO+ [27], and G-Ref [28], [29]
datasets using the overall IoU metric. LAVT outperforms its coun-
terparts on all evaluation subsets of all three datasets. Compared
with the respective second-best methods on the validation, testA,
and testB subsets of RefCOCO, LAVT obtains higher overall
IoU with absolute margins of 7.85%, 7.68%, and 6.25%, respec-
tively. Similarly, LAVT attains noticeable improvements compared
with the previous state of the art on RefCOCO+, with large
margins of 7.97%, 9.89%, and 6.56% on the validation, testA,
and testB subsets, respectively. On the most challenging G-Ref
dataset (which contains longer expressions), LAVT surpasses the
respective second-best methods on the validation and test subsets
from the UMD partition by absolute margins of 9.62% and 7.84%,
respectively. In a similar way, on the validation set from the Google
partition, LAVT outperforms the second-best EFN [42] by an
absolute 9.38%.

We want to note that the multi-class Dice loss adopted in this
work is more effective for training LAVT than the cross-entropy
loss adopted in the conference version of this work [31]. While on
most datasets, the new loss brings relatively small improvements,
on the G-Ref UMD partition, it improves the overall IoU by more
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TABLE IV
Comparison With State-of-the-Art Methods on the Refer-YouTube-VOS and A2D Sentences Datasets Under the “Train-From-Scratch” and

“Pretrain-Then-Finetune” Training Settings With Different Encoder Networks Employed

Method Visual Encoder Language Model Refer-YouTube-VOS A2D Sentences
J&F (%) J (%) F (%) P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU

“train-from-scratch”
Gavrilyuk et al. [3] I3D 1D Conv. - - - 47.5 34.7 21.1 8.0 0.2 53.6 42.1
Wang et al. [13] I3D 1D Conv. - - - 55.7 45.9 31.9 16.0 2.0 60.1 49.0
CMSA+CFSA [92] DeepLab-ResNet-101 None - - - 48.7 43.1 35.8 23.1 5.2 61.8 43.2
URVOS [12] ResNet-50 Linear 47.23 45.27 49.19 - - - - - - -
CMPC+ [54] I3D ConvLSTM 47.48 45.64 49.32 65.5 59.2 50.6 34.2 9.8 65.3 57.3
CSTM [55] Inception-v3 + I3D GRU × 2 - - - 65.4 58.9 49.7 33.3 9.1 66.2 56.1
LBDT-4 [57] ResNet-50 × 2 LSTM 49.38 48.18 50.57 73.0 67.4 59.0 42.1 13.2 70.4 62.1
MTTR [18] Video Swin-T GPT-2 55.32 54.00 56.64 75.4 71.2 63.8 48.5 16.9 72.0 64.0
ReferFormer [19] Video Swin-T RoBERTa 56.00 54.80 57.30 76.0 72.2 65.4 49.8 17.9 72.3 64.1
“naı̈ve” vid. LAVT Video Swin-T BERT 55.93 54.31 57.55 72.6 67.0 58.9 43.6 15.1 72.2 63.1
video LAVT Video Swin-T BERT 57.04 55.39 58.69 77.3 73.2 65.0 49.0 17.3 74.4 65.9
video LAVT Video Swin-S BERT 58.79 57.10 60.49 78.6 75.4 67.6 52.2 20.3 75.5 67.7
video LAVT Video Swin-B BERT 60.45 58.49 62.42 80.0 76.2 69.1 53.9 21.0 77.0 68.7
“pretrain-then-finetune”
ReferFormer [19] Video Swin-T RoBERTa 59.40 58.00 60.90 82.8 79.2 72.3 55.3 19.3 77.6 69.6
video LAVT BERT 60.91 59.37 62.45 82.8 79.3 71.5 54.6 19.5 77.9 70.0
ReferFormer [19] Video Swin-S RoBERTa 60.10 58.60 61.60 82.6 79.4 73.1 57.4 21.1 77.7 69.8
video LAVT BERT 62.96 60.35 65.56 82.9 79.6 73.1 57.2 21.2 79.1 70.4
ReferFormer [19]

Video Swin-B

RoBERTa 62.90 61.30 64.60 83.1 80.4 74.1 57.9 21.2 78.6 70.3
VLT [43] BERT 63.80 61.90 65.60 - - - - - - -
SgMg [58] RoBERTa 65.70 63.90 67.40 - - - - - 79.9 72.0
TempCD [59] RoBERTa 65.80 63.60 68.00 - - - - - - -
video LAVT

Video Swin-B BERT

64.90 62.22 67.58 84.6 81.1 74.7 58.1 22.3 80.7 71.9
unified LAVT 65.77 63.61 67.93 85.7 82.9 75.8 59.2 23.5 81.4 72.4
LAVT + SgMg [58] 66.73 64.82 68.63 85.9 82.7 76.1 60.6 24.9 81.8 72.6
LAVT (bi-3D-PWAM)+ SgMg [58] 67.14 65.17 69.09 86.0 82.8 76.2 60.8 25.2 82.0 73.0
LAVT + TempCD [59] 66.80 64.73 68.87 86.1 82.6 76.3 60.9 25.0 82.0 72.5
LAVT (bi-3D-PWAM)+ TempCD [59] 67.19 65.14 69.23 86.3 82.8 76.7 61.3 25.4 82.3 72.9

We refer to the language model as neural networks that transform word embeddings before multi-modal feature fusion. Readers can refer to the respective papers for details (e.g., the word
embeddings). Experiments for LAVT + SgMg / TempCD adopt the encoding strategy of LAVT, maintaining BERT as the language model.

than 2 absolute points. Conversely, the effects of the new loss is
less obvious on the reference methods presented in Table III. This
highlights the efficacy of our loss as well as the potential of our
model.

The reference methods in Table II adopt different visual back-
bones, language encoders, and training recipes. To make fair com-
parisons and verify the effectiveness of our approach, in Table III,
we report results of the proposed LAVT and three other state-of-
the-art methods, LTS [33], VLT [17], and EFN [42], obtained by
adopting BERTBASE as the language encoder and Swin-B as the
vision backbone network and following the same training setting
(described in Section III-C) for all models. While LTS employs a
“locate-then-segment” pipeline, VLT is representative of methods
that employ a cross-modal Transformer decoder. Conversely, EFN
is representative of methods that fuse cross-modal information via
an encoder network and additionally rely on a complicated decoder
for obtaining the best results. As shown in Table II and Table III
, our method outperforms LTS, VLT, and EFN on RefCOCO/g/+
datasets in all metrics. To further verify that our proposed LAVT
encoding scheme is more effective than its counterpart cross-
modal decoder approach, we combine our approach with VLT by
substituting our original light-weight mask predictor with the cross-
modal Transformer decoder from VLT. As shown in this experiment
(indicated by “LAVT + VLT” in Table II and Table III), employing
a Transformer decoder to perform additional cross-modal feature
fusion after language-aware visual encoding by LAVT does not
bring gains.

For a fair comparison with PolyFormer and UNINEXT, we
report results of LAVT and these two methods using identical
data and training settings, although PolyFormer and UNINEXT

respectively use stronger visual backbones (Swin-L and ConvNeXt-
L) than LAVT (Swin-B) due to their architectural design. The results
reported under the “train with augmented data” section of Table II
demonstrate the potential of “scaling up” LAVT by using more
training data. Furthermore, the unified LAVT trained under the
“jointly-train” setting with mixed data continues to demonstrate
robust performance across these datasets.

Referring Video Segmentation: In Table IV, we evaluate video
LAVT against the state-of-the-art referring video segmentation
methods on the Refer-YouTube-VOS and A2D Sentences datasets.
In these experiments, we adopt different types of Transformer layers
in our model, namely, those from the tiny, small, and base versions
of Video Swin. There are two training settings for this task. The
first one is what we call “train-from-scratch,” which means that the
models are trained on the training set of each evaluation dataset
with initialization weights from the Video Swin Transformer [26],
without employing additional training data. This is the main setting
adopted in virtually all papers prior to the ReferFormer paper [19].
The second is what we call the “pretrain-then-finetune” setting. This
is a more compute-intensive setting that ReferFormer mainly refers
to. In this setting, the model is first pretrained on the concatenated
training sets of RefCOCO, RefCOCO+, and G-Ref (the UMD
partition), by setting 𝑇 = 1, and then respectively finetuned on the
Refer-YouTube-VOS training set and the A2D Sentences training
set. This setting requires several weeks of training with a minimum
of eight V100 cards for each model.

Under the “train-from-scratch” setting, when all models employ
Video Swin-T, on Refer-YouTube-VOS, the proposed video LAVT
outperforms ReferFormer by margins (absolute) of 1.04%, 0.59%,
and 1.39%, and MTTR by margins (absolute) of 1.72%, 1.39%,
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and 2.05%, in terms of J&F , J , and F , respectively; similarly,
on A2D Sentences, video LAVT leads ReferFormer by absolute
2.1% and 1.8%, and MTTR by absolute 2.4% and 1.9%, in overall
IoU and mean IoU, respectively. In terms of the P@K metrics
(where K is a threshold), our method also compares favorably
against ReferFormer and MTTR. Compared to these two models,
video LAVT enjoys a simpler architecture with fewer components
and a simpler training protocol, without the need of instance
sequence matching. These factors make it a more adaptation-
friendly model. Adopting more powerful Video Swin layers leads to
better results, with video LAVT based on Video Swin-B achieving
very competitive results.

The ‘“naı̈ve” vid. LAVT’ entry in Table IV refers to the imple-
mentation where we only switch from 2D to 3D Transformer layers
but maintain the original 2D PWAMs. This is structure 1 in Tables I
and VII. On Refer-YouTube-VOS, with 55.93 J&F , 54.31 J ,
and 57.55 F , “naı̈ve” video LAVT works surprisingly well—it
outperforms MTTR and performs on a par with ReferFormer. On
A2D Sentences, where action information is key to segmentation,
“naı̈ve” video LAVT (PWAMs inside which do not model spatio-
temporal information) does not do as well by comparison. But as 3D
PWAMs replace 2D PWAMs, the efficacy of video LAVT is clearly
demonstrated again. Overall, these results show that our proposed
language-aware visual encoding scheme is reasonably general for
both images and videos, and that the proposed 3D PWAM is an
effective way to gather helpful spatio-temporal context for multi-
modal feature fusion.

Under the “pretrain-then-finetune” setting, the proposed video
LAVT and unified LAVT outperform ReferFormer on all backbones
in all metrics for Refer-YouTube-VOS, while also compares favor-
ably with respect to ReferFormer on A2D Sentences. Specifically,
on Refer-YouTube-VOS, video LAVT surpasses ReferFormer by
absolute points of 1.51, 2.86, and 2.00 in terms of J&F when
using Video Swin-T, Video Swin-S, and Video Swin-B as the visual
backbone, respectively. Unified LAVT outperforms ReferFormer
by absolute points of 2.87, 2.31, and 3.33 in terms of J&F ,
J , and F , respectively, when using Video Swin-B as the visual
backbone. On A2D Sentences, when compared to ReferFormer,
video LAVT gains an advantage in most cases. Specifically, as the
adopted backbone network scales from Video Swin-T to Video
Swin-S and then to Video Swin-B, the corresponding video LAVT
models show progressively better results, improving across an
increasing number of metrics: from 4 metrics, to 5, and finally to all
7 metrics. This pattern also suggests that our method exhibits good
learning capacity, as its performance consistently improves with
increasing model complexity. Compared to video LAVT, unified
LAVT achieves further improvements in all evaluated metrics on the
A2D Sentences dataset. It may be worth mentioning that in contrast
to ReferFormer, which adopts a full-fledged semi-supervised video
object segmentation algorithm (i.e., CFBI [93]) for mask refinement
in a post-processing step, our results are directly obtained from our
model without any post-processing.

Additionally, under the “pretrain-then-finetune” setting, we
apply our “jointly-encode-and-align” strategy to recent innovative
“encode-then-align” approaches to further demonstrate the effec-
tiveness of video LAVT. We substitute the multi-modal information
encoding phase (i.e., the visual encoder and the text encoder) of the
aforementioned methods with the cross-modal information fusion
strategy inherent to LAVT. Specifically, on the Refer-YouTube-
VOS dataset, as shown by the “LAVT + SgMg” and “LAVT +
TempCD” entries in Table IV, video LAVT obtains an improvement

TABLE V
Main Ablation Results for LAVT on the RefCOCO Validation Set

LP PWAM P@0.5 P@0.7 P@0.9 oIoU mIoU
✓ ✓ 85.87 76.64 35.30 73.50 75.41

✓ 83.38 73.08 33.42 72.01 73.76
✓ 82.91 73.80 33.96 71.75 73.44

81.49 71.02 32.79 70.73 71.94

of 1.00, 1.13, and 0.87 absolute points on J&F , J , and F
respectively, compared to TempCD, and an improvement of 1.03,
0.92, and 1.23 absolute points on J&F , J , and F respectively,
compared to SgMg. On A2D Sentences, we observe a similar trend
of performance enhancement. Compared to SgMg that reported
results on A2D Sentences, integrating the “jointly-encode-and-
align” strategy from LAVT leads to enhanced performance.

Furthermore, we find that, similar to the approach of updating
visual information in LAVT, the iterative update of textual informa-
tion at each stage of hierarchical visual information encoding can be
equally important. We have engineered a “bi-3D-PWAM” for this
purpose, which employs a bidirectional 3D PWAM to concurrently
update textual information. This involves the incorporation of an at-
tention module analogous to the 3D PWAM, with visual and textual
features alternating as inputs. The experimental outcomes presented
in Table IV, annotated with “bi-3D-PWAM,” demonstrate that the
strategy of updating text can further boost the model’s performance
on both the Refer-YouTube-VOS and the A2D Sentences datasets.
Due to space constraints, we further discuss the details of bi-3D-
PWAM, the results for Ref-DAVIS17 and J-HMDB Sentences, the
unified LAVT results under the “jointly-train” setting, and the
comparison with recent methods in the supplementary section.
Moreover, we have conducted discussions, direct comparisons, and
experiments applying LAVT’s “jointly-encode-and-align” strategy
in recent innovative approaches [46], [58], [59], [62] to demonstrate
the effectiveness of (video) LAVT and ensure our work remains
up-to-date. Please refer to the supplementary materials for more
details.

C. Ablation Study

1) Components of LAVT: We conduct several ablations to
evaluate the effectiveness of the key components and design choices
in LAVT. All experiments use the same visual backbone network,
language model, and training recipes as described in Section III-C.

Language Pathway (LP): Table V shows that removing LP
(which corresponds to, mathematically, the removal of (8) and (9),
or schematically, the removal of the orange stream in Fig. 2) leads
to a drop of 1.49 and 1.65 absolute points in overall IoU and mean
IoU, respectively. In addition, precision drops by 2 to 3 points
across all three thresholds. These results demonstrate the benefit
of exploiting our vision Transformer encoder network for jointly
embedding linguistic and visual features.

Pixel-Word Attention Module (PWAM): In this ablation study,
we replace the spatial language feature maps 𝐺𝑖 in PWAM with
a sentence feature vector globally pooled from all words [94]. As
shown in Table V, this ablation leads to a drop of 1.75 and 1.97 abso-
lute points in overall IoU and mean IoU, respectively, and a drop of
2 to 3 absolute points in precision across the three thresholds. These
results illustrate the effectiveness of densely aggregating linguistic
context via our proposed attention mechanism for enhancing cross-
modal alignments.
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TABLE VI
Ablation Studies for LAVT on the RefCOCO Validation Set

P@0.5 P@0.7 P@0.9 oIoU mIoU
(a) activation function in the language gate (LG)
Tanh (*) 85.87 76.64 35.30 73.50 75.41
Sigmoid 85.20 75.80 35.35 72.96 75.24
(b) normalization layer in the pixel-word attention module (PWAM)
InstanceNorm (*) 85.87 76.64 35.30 73.50 75.41
LayerNorm 84.93 75.48 35.25 72.91 74.73
BatchNorm 83.84 74.76 33.86 72.35 74.10
None 83.85 74.16 34.01 72.07 73.82
(c) features used to produce the final segmentation
𝐹4, 𝐹3, 𝐹2, 𝐹1 (G*) 85.87 76.64 35.30 73.50 75.41
𝐹4, 𝐹3, 𝐹2, 𝐹1 (NG) 85.40 76.53 35.61 72.75 75.22
𝐸4, 𝐸3, 𝐸2, 𝐸1 (G) 85.07 76.08 34.97 72.88 75.09
𝐸4, 𝐸3, 𝐸2, 𝐸1 (NG) 84.87 76.05 34.72 72.92 74.99
𝑉4, 𝑉3, 𝑉2 (G) 84.25 75.28 33.15 71.88 74.26
𝑉4, 𝑉3, 𝑉2 (NG) 84.58 76.12 33.13 72.45 74.49
(d) multi-modal attention module
PWAM (*) 85.87 76.64 35.30 73.50 75.41
BCAM [11] 82.29 73.03 33.22 69.75 72.55
GA (GARAN) [39], [77] 85.20 75.80 34.29 72.36 74.75

(G) indicates that LG is adopted in the language pathway and (NG) indicates the opposite.
Rows with (*) indicate default choices.

Activation Function in the Language Gate (LG): Our proposed
LG learns a set of spatial weight maps, which give our network
the flexibility to control the flow of language information in the
language pathway. In Table VI(a), we compare the sigmoid function
and the hyperbolic tangent function as the final activation function
in LG. Using the hyperbolic tangent function generally leads to
better results.

Normalization Layer in PWAM: As described in Section III-A-
2, we adopt a final instance normalization layer in the projection
functions 𝜔𝑖𝑞 and 𝜔𝑖𝑤 in PWAM. As we illustrate in Table VI(b),
this particular choice of normalization function has a non-trivial
effect. In addition to instance normalization (our default choice),
we experiment with layer normalization, batch normalization, and
not having a normalization layer in the functions 𝜔𝑖𝑞 and 𝜔𝑖𝑤 .
All three other choices produce inferior results. Among these three
choices, layer normalization works better than batch normalization,
which works better than not using a normalization layer.

Features Used for Prediction: As shown in Fig. 4, the language-
aware visual encoding process of LAVT produces three kinds
of spatial feature maps which encapsulate visual and linguistic
information, i.e., the outputs from PWAMs (𝐹𝑖 , 𝑖 ∈ {1, 2, 3, 4}),
the outputs from the Transformer layers (𝑉𝑖 , 𝑖 ∈ {2, 3, 4}), and the
inputs to the following Transformer layers (𝐸𝑖 , 𝑖 ∈ {1, 2, 3}). While
our default choice is to use 𝐹𝑖 for predicting the object mask, we also
consider the other two types of feature maps natural candidates for
this purpose. As shown in Fig. 2, 𝐸4 is not generated in the standard
architecture of LAVT. To have a convincing ablation study, we
compute 𝐸4 with an additional language pathway as defined in (8)
and (9). Conversely, since 𝑉1 contains pure visual information,
while 𝑉2, 𝑉3, and 𝑉4 contain multi-modal information, we exclude
𝑉1 from the experiments. In Table VI(c), we report segmentation
results obtained using 𝐹𝑖 , 𝐸𝑖 , and𝑉𝑖 with and without language gate
(indicated by ‘G’ and ‘NG,’ respectively). Table VI(c) shows that
using our default choice of 𝐹𝑖 with language gate produces the best
overall results among all choices. Also, we observe that while the
language gate tends to be useful for 𝐹𝑖 and 𝐸𝑖 , it slightly degrades

TABLE VII
Investigation of Potential Structures for 3D PWAM as Detailed

in Table I and Section III-B-2, Using the Validation Set of
Refer-YouTube-VOS

structure J&F (%) J (%) F (%)

1 55.93 54.31 57.55
2 43.52 44.47 42.57
3 54.69 53.00 56.39
4 56.49 54.95 58.04
5 41.97 42.54 41.41
6 51.92 50.93 52.90
7 56.34 54.77 57.90
8 55.31 53.61 57.02
9 56.56 55.01 58.10

10 56.52 54.91 58.14
11 56.54 54.93 58.16

12 (*) 57.04 55.39 58.69
Structure 12 has the overall best results, while structures 4 and 7 have the best results in
counterpart structures.

TABLE VIII
Comparison Between “PWAM” and “3D PWAM” on the

Refer-YouTube-VOS Dataset Under the “Train-From-Scratch” Setting
and the Image-Based Visual Backbone, Swin-B

Attention Module J&F (%) J (%) F (%) △J&F (%)
PWAM 58.95 56.98 60.91 +0.00
3D PWAM 60.10 57.97 62.23 +1.15

results for 𝑉𝑖 .
Multi-Modal Attention Module: In Table VI(d), we compare

PWAM with two state-of-the-art attention modules by directly
replacing PWAM with them in our framework. Compared to both
the grouped attention (GA or GARAN) [39], [77] and the bi-
directional cross-modal attention module (BCAM) [11], PWAM
achieves higher scores on all metrics. BCAM is representative of
the computationally-heavy attention modules, while GA is a recent,
top-performing module.

2) The Design of the 3D PWAM: Design Choices: As de-
scribed in Section III-B-2, we evaluate many different ways to
construct the 3D PWAM. Please refer to the text below, Table I,
and Fig. 6 for the details. We report the empirical results in
Table VII. First, in structures 1 to 8, we consider variants of the 𝜔𝑚

and 𝜔𝑞 projection functions, because extracting spatio-temporal
information from visual features directly is the most intuitive option.
Then in structures 9 to 12, we consider the best variants found
previously and apply them to the projection functions 𝜔𝑤 and 𝜔𝑜,
which extract information from the linguistic features and multi-
modal features, respectively.

In structures 1 to 5, “element-wise” (an element being a pixel
feature vector) convolution, temporal convolution, spatial convo-
lution, spatio-temporal convolution, and sequentially decomposed
spatio-temporal convolutions are explored, respectively. Results
show that structure 4 (with a 3×3×3 convolution) works the best
among the five structures. In structures 6 to 8, we investigate
whether two parallel convolutions complement each other and
work better than a single spatio-temporal convolution. Specifically,
structures 6 to 8 correspond to the ‘3 × 1 × 1 + 1 × 3 × 3’,
‘3× 3× 3 + 1× 1× 1’, and ‘3× 3× 3 ; 1× 1× 1’ variants in Table I,
respectively, and results show that structure 7 with parallel 3×3×3
and 1×1×1 convolutions followed by element-wise addition is the
best option.

So far we have found that a single 3×3×3 convolution (structure
4) and parallel convolutions joined by addition (structure 7) are
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Fig. 8. Visualizations of predictions and feature maps on an example from the RefCOCO validation set. The left-most column illustrates the input expression, the
input image, and the ground-truth mask overlaid on the input image, from top to bottom. In each row on the right, we visualize the predicted mask and the feature
maps used for final classification (i.e., 𝑌4, 𝑌3, 𝑌2, and 𝑌1) from left to right. LP represents the language pathway and PWAM represents the pixel-word attention
module.

“white cell phone in middle”“blue phone” “phone on very bottom” “flip phone on right”

Image Prediction Ground truth

“guy by the red wall
with arms crossed”

Expressions:

Expressions: “gal touching hair”
“guy in black sitting 
to left leaned over” “guy in strip shirt, on laptop”

Ground truth Ground truth Ground truthPrediction Prediction Prediction

Fig. 9. Visualizations of predicted masks and the ground-truth masks on two examples from the RefCOCO validation set.

TABLE IX
Comparison Between the Vision-Language Fusion (VLF) Module of

CM-FPN [19] and Our 3D PWAM in Controlled Experiments

Method Backbone J&F (%) J (%) F (%)

video LAVT w/ VLF [19] Video Swin-T 54.27 52.63 55.91
video LAVT Video Swin-T 57.04 55.39 58.69

video LAVT w/ VLF Video Swin-S 54.95 52.97 56.92
video LAVT Video Swin-S 58.79 57.10 60.49

video LAVT w/ VLF Video Swin-B 58.07 55.90 60.25
video LAVT Video Swin-B 60.45 58.49 62.42

Results are reported for the Refer-YouTube-VOS dataset under the “train-from-scratch”
setting.

among the best implementations for projection functions 𝜔𝑚 and
𝜔𝑞 . Based on these results, we then let the projection functions 𝜔𝑤

and 𝜔𝑜 adopt these constructions, leading to structures 9 and 12,
respectively, and results show that structure 12 is the better option.
Finally, in structures 10 and 11, we implement ‘3×3×3+1×1×1’
for either𝜔𝑚 or𝜔𝑞 . Neither structure performs better than structure
12, which verifies that it is helpful to implement ‘3×3×3+1×1×1’
for all four projection functions and this leads to our final design of
the 3D PWAM.

Effectiveness of the 3D PWAM: In Table VIII, to better un-

derstand the temporal modeling capabilities of the 3D PWAM, we
conduct a comparison with the 2D PWAM using a robust image-
based visual backbone, Swin-B. In this framework, the 3D PWAM is
the sole unit capable of temporal modeling. We see that 3D PWAM
leads to 1.15, 0.99, and 1.32 absolute points of improvement over the
static model in terms of J&F , J , and F , respectively. This result
demonstrates that the proposed 3D PWAM is effective at capturing
helpful temporal cues that can lead to more accurate segmentation
in videos.

Comparison With the CM-FPN: The ReferFormer’s CM-
FPN [19] is a multi-level cross-modal fusion strategy developed
in the context of referring video object segmentation. At its core
is a “vision-language fusion” module composed of a self-attention
block followed by a cross-attention block, inserted into each level
of an FPN [95]. The most sensible way to compare 3D PWAM
to CM-FPN is by replacing our 3D PWAM with the “vision-
language fusion” module in our framework, while at the same time
maintaining the same backbones, language model, and training
recipes.

Table IX shows that the 3D PWAM outperforms the CM-
FPN’s vision-language fusion (VLF) module in terms of J , F ,
and J&F metrics across Video Swin-T, Video Swin-S, and Video
Swin-B backbone networks. Across all backbone networks, the 3D
PWAM demonstrates a significant advantage, with an increase of
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Expressions:
Query1: “brown dog walking” Query2: “white dog walking around orange ball” Query3: “orange ball in the blue bowl”

Expressions:
Query1: “the front car is moving” Query2: “racing car running second”

Query3: “the fourth car in the ranking is moving” Query4: “blue racing car running”

Video frames Ground truthPredictions

Fig. 10. Visualizations of predicted masks and the ground-truth masks on examples from the A2D Sentences validation set. The example enclosed with green
lines is a success case, and that enclosed with red lines is a failure case. The first example is quite challenging, which includes multiple small targets, and our
model segments them out quite accurately. In the second example, the model seems confused by the many different race cars, which are small and close to each
other, with indistinct colors. Zoom in to have a better view.

2 to 4 points across various metrics. This advantage likely stems
from the 3D PWAM’s unique feature processing, where language
features with spatial dimensions from vision-to-language attention
undergo element-wise multiplication with visual features, leading
to multi-modal fusion. In contrast, the CM-FPN’s VLF module
lacks this multiplication step, outputting the results of vision-
to-language attention without further fusion. The 3D PWAM’s
approach is integral to the LAVT framework, as segmentation maps
are derived directly from its output, where convolutions assess the
match between language and vision information at each spatial
location. In ReferFormer’s CM-FPN, there is no need for such
direct fusion, as cross-modal information is supplemented at a later
stage from the Transformer encoder-decoder output.

D. Visualizations
In Fig. 8, we visualize the predictions and feature maps of our

full LAVT model and two ablated models (without the language
pathway (‘w/o LP’) and without the pixel-word attention module
(‘w/o PWAM’). From the first row, we can observe that the lower-
resolution feature maps (i.e., 𝑌4, 𝑌3, 𝑌2) in our full model can
accurately locate the high-level concept described by the text, while
the high-resolution feature maps (i.e., 𝑌1) contain boundary cues
that help with accurate segmentation. Comparing the predicted
masks of the three models, we can observe that the removal of LP
and the removal of PWAM both lead to false negative predictions
on the windshield area of the target bus, while the removal of LP
additionally results in the false positive identification of the middle
bus. These qualitative results further validate the effectiveness of
our proposed LP and PWAM mechanisms. More visualization
examples of LAVT and video LAVT are shown in Fig. 9, Fig. 10,
and the supplementary material.

V. Conclusion and Future Work
In this paper, we have proposed the Language-Aware Vision

Transformer (LAVT), a general framework for addressing referring

segmentation (i.e., referring image/video segmentation). Unlike
previous methods, LAVT leverages the intermediate layers of the
visual Transformer encoder network to jointly embed linguistic
and visual features, thereby relocating the key process of cross-
modal feature fusion to the stage of image/video encoding. This is
achieved by “injecting” linguistic cues into the vision Transformer
network at every stage, where the cues are aligned with visual
features by a pixel-word attention module and modulated by a
gating function. In particular, we have designed a 3D version
of the pixel-word attention module for processing video inputs,
which leverages multi-scale 3D convolutions to effectively model
spatio-temporal information. Extensive ablation studies validate
our design choices, and experimental results on five benchmarks
demonstrate the advantage of our method with respect to the state-
of-the-art approaches.

Since LAVT is designed to be a simple baseline for the refer-
ring segmentation task, there can potentially be many interesting
extensions from the current model. We briefly outline three in the
following. First, beyond the currently proposed language-aware
visual encoding scheme based on a vision Transformer, the en-
coding scheme that works in the opposite direction—vision-aware
language encoding based on a language Transformer—may also
produce strong features conducive to segmentation. This leads to a
potential bi-directional fusion strategy that may yield better results.
Second, from an architectural point of view, currently the (3D)
PWAM at each stage amounts to a cross-attention layer (followed
by an element-wise multiplication operation) inserted at the end of
the corresponding stage of the (Video) Swin Transformer [25], [26],
in effect converting the original vision Transformer into a multi-
modal Transformer. This leads to the question that whether we can
scale up our method by making native changes to the (Video) Swin
Transformer, where cross-modal attention and element-wise multi-
plication can be implemented based on the original non-overlapping
window and shifted window attention layers in the (Video) Swin
Transformer. This fully integrated approach, if successful, has the
potential to serve as a much more general architecture suitable for
many vision-language tasks, including pre-training tasks. Third, the
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additional Transformer encoder-decoder component exploited for
multi-modal feature fusion in MTTR [18] and ReferFormer [19] is
a promising way to align multi-modal features and can potentially
be added to our existing framework to produce stronger results.

Beyond the architectural aspect, there are likely many other
directions for improving the state-of-the-art referring segmentation
models. As much of the interest in referring segmentation stems
from a desire to develop an algorithm that can segment an image or
video in an open world (i.e., segment out any object), it makes sense
to explore the use of pre-trained large vision-language models (e.g.,
CLIP [21] and Stable Diffusion [96]) to improve generalization.
Some direct benefits of doing so can be derived from the following
two aspects. First, the enlarged vocabulary of the language encoder
may vastly expand the number of concepts understood by the model.
Second, alignment information in the pre-trained model should
be useful. For instance, the pre-trained weights can be used for
initialization, or weak supervisory signals may be extracted for
the supervision of the task-specific model. Of course, successfully
leveraging pre-trained representations requires an understanding
of their nature, which differs between discriminative models (e.g.,
from CLIP) and generative models (e.g., from Stable Diffusion). As
in many areas of artificial intelligence, building this understanding
will likely require a sustained, empirically-driven effort from the
community. Finally, a robust method for assessing the resilience of
referring segmentation models—specifically their ability to handle
changes, ambiguities, and inaccuracies in expressions—would be
highly beneficial. To this end, we hope that the advent of large
language models capable of handling multi-modal inputs (e.g.,
GPT-4 [97]) will pave the way for large-scale referring expression
generation [29]. This advancement could provide data to enable
comprehensive model evaluation against the vast variations of lan-
guage and support the large-scale training of referring segmentation
models.

In conclusion, we suggest that it may be beneficial to extend
our method to other related tasks, such as referring expression
comprehension, visual question answering, and spatio-temporal
video grounding. We leave these possibilities for future work.
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*Supplementary Material

Appendix
Additional Dataset Details

Ref-DAVIS17 [30] extends DAVIS17 [91] with language de-
scriptions for specific objects across 90 videos. The dataset, split
into 60 training and 30 validation videos, contains 1,544 sentences
describing 205 objects. we report the results by averaging the scores
using the official evaluation code. The J-HMDB Sentences [3]
dataset is augmented from the J-HMDB [90] dataset with annotated
sentences and it contains 928 videos of 21 actions, with 928
corresponding sentences.

Additional Implementation Details
In the “train-from-scratch” setting, video LAVT is trained on

Refer-YouTube-VOS for 30 epochs with mini-batches of size 8, and
A2D Sentences for 40 epochs with mini-batches of size 32, where
each video clip input consists of 8 frames. In the “pretrain-then-
finetune” setting, the model is first pretrained on the concatenated
training sets of RefCOCO [27], RefCOCO+ [27], and G-Ref [28]
(the UMD partition) for 12 epochs, by setting 𝑇 = 1, and then
respectively finetuned on the Refer-YouTube-VOS training set and
the A2D Sentences training set for 15 epochs. Frames are resized
to 480×480 and window size in the Transformer layers is set to
8×7×7. No data augmentation techniques are applied. Following
ReferFormer [19], when evaluating on Refer-YouTube-VOS, at each
forward pass, we feed the entire video to our model and directly
obtain the predicted mask for each frame. Following MTTR [18]
and ReferFormer [19], when evaluating on A2D Sentences, we
place the target frame at the center (8th) position of an input video
clip (of length 16) and obtain the predicted mask for the target
frame. In addition to the “pretrain-then-finetune” setting, unified
LAVT is further trained under the “jointly-train” setting by mixing
the datasets of RefCOCO/+/g. For this setting, we adopt image
augmentation methods similar to those used by ReferFormer.

For a fair comparison with PolyFormer [48] and UNINEXT [47]
on the task of referring image segmentation, we have trained LAVT
and these methods using identical data and training settings. The
data comprise the concatenated training sets of RefCOCO [27],
RefCOCO+ [27], G-Ref [28] with all validation and testing images
removed, and Refer-YouTube-VOS [12], where each frame is treated
as an individual image.

Additional Experiment Results and Details
Comparison with Others: A Universal Encoding Strategy

We conduct experiments applying LAVT’s “jointly-encode-
and-align” strategy in recent innovative “encode-then-align” meth-
ods to demonstrate the effectiveness of (video) LAVT. We substitute
the multi-modal information encoding stage (i.e., the visual encoder
and the text encoder) of the aforementioned methods with the cross-
modal information fusion strategy of LAVT. In all experiments, the
models utilize the robust Video Swin-B as the visual backbone,
are pre-trained on the RefCOCO/+/g datasets, and subsequently
are fine-tuned on Refer-YouTube-VOS. The code and weights of
TempCD [59] have not been released, so we replicate the work
based on the technical details described in the paper.

Specifically, as shown in Table S1, we observe an improvement
of 1.00, 1.03, and 0.87 absolute points on J&F , J , and F ,

respectively, with respect to TempCD, and an improvement of 1.03,
0.92, and 1.23 absolute points on J&F , J , and F , respectively,
with respect to SgMg [58]. Upon integrating the “jointly-encode-
and-align” strategy from LAVT, both TempCD and SgMg have
exhibited enhanced performance.

Furthermore, we find that, similar to the approach of updating
visual information in LAVT, the iterative update of textual informa-
tion at each stage of hierarchical visual information encoding can be
equally important. We have engineered a “bi-3D-PWAM” for this
purpose, which employs a bidirectional 3D PWAM to concurrently
update textual information. This involves the incorporation of an
attention module analogous to the 3D PWAM, with visual and
textual features alternating as inputs. The experimental outcomes
presented in the last row of Table S1 demonstrate that with a
consistent backbone (Video Swin-B) and training setting (“pretrain-
then-finetune”), the strategy of updating text effectively brings
performance improvements (+0.39 for TempCD and +0.41 for
SgMg, in terms of J&F ).

TABLE S1. Comparison between the “jointly-encode-and-align” strategy of
LAVT and the common “encode-then-align” strategy, on the Refer-YouTube-
VOS validation set, under the “pretrain-then-finetune” setting, with SgMg [58]
and TempCD [59] as baselines.

Method Backbone J&F (%) J (%) F (%)

video LAVT Video Swin-B 64.90 62.22 67.58
SgMg [58] Video Swin-B 65.70 63.90 67.40
TempCD [59] Video Swin-B 65.80 63.60 68.00

SgMg + LAVT Video Swin-B 66.73 64.82 68.63
SgMg
+ LAVT (bi-3D-PWAM) Video Swin-B 67.14 65.17 69.09

TempCD + LAVT Video Swin-B 66.80 64.73 68.87
TempCD
+ LAVT (bi-3D-PWAM) Video Swin-B 67.19 65.14 69.23

We have conducted similar experiments with some recent
referring image segmentation methods, such as GRES [45]. We
substitute GRES’ visual encoders with LAVT’s “jointly-encode-
and-align” architecture, and utilize the same datasets, visual back-
bone, and training settings. We present these experiment results
in Table S4 with details and discussions in the caption. Upon
integrating the “jointly-encode-and-align” strategy from LAVT,
GRES exhibits enhanced performance, which demonstrates the
effectiveness and generality of this strategy.

DMFormer [61] explores the effective transfer of knowledge of
large-scale pretrained vision-language models (e.g., GLIP [98])
to the task of referring video object segmentation. To make a
fair comparison with it, we substitute the backbone in LAVT
with the GLIP Swin-Large model utilized in DMFormer, and run
experiments under the same “pretrain-then-finetune” setting. This
necessitates the replication and expansion of images in the temporal
dimension of 3D PWAM, which is consistent with what is employed
in the experiments detailed in Table VIII of the main paper. As
illustrated in Table S2, LAVT exhibits competitive performance
with respect to DMFormer using the same visual backbone that has
undergone vision-language aligning.

Comparison With Others: Ref-DAVIS17 and J-HMDB Sentences
On Ref-DAVIS17, we directly report the results using the model

trained on Refer-Youtube-VOS [12], without finetuning the model.
On J-HMDB Sentences, we directly report the results using the
model trained on A2D Sentences [3], without finetuning the model.
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From Table S5, we see that our proposed video LAVT outper-
forms ReferFormer on all backbones in all metrics for Ref-DAVIS17
and J-HMDB Sentences. Specifically, on Ref-DAVIS17, there is an
improvement of 2.46, 1.99, and 2.93 absolute points in J&F , J ,
andF , respectively. On J-HMDB Sentences, video LAVT surpasses
ReferFormer by absolute points of 11.1 and 1.1 in terms of oIoU
and mIoU, respectively. Furthermore, video LAVT continues to
demonstrate competitive performance with respect to other more
recent methods (i.e., DMFormer [61] and SgMg [58].

Comparison With Others: Unified LAVT
From Table S3, we observe that when more image and video

data are incorporated (i.e., under the “jointly-train” setting), unified
LAVT achieve more significant gains. Unified LAVT outperforms
ReferFormer by 2.21, 1.99, and 2.43 absolute points in J&F , J ,
and F , respectively. The results demonstrate the effectiveness of
unified LAVT in the unified task of referring image and video
segmentation. Furthermore, they confirm the potential of the
proposed “jointly-encode-and-align” strategy to scale up on more
data.

TABLE S2. Comparison with DMFormer [61] on the Refer-YouTube-VOS
dataset under the “pretrain-then-finetune” training setting with the same back-
bone networks employed.

Method Backbone J&F (%) J (%) F (%)

video LAVT Video Swin-B 64.90 62.22 67.58
DMFormer [61] Swin-L (GLIP) 64.90 63.40 66.50

video LAVT Swin-L (GLIP) 65.87 63.88 67.84

TABLE S3. Comparison with ReferFormer [61] on the Refer-YouTube-VOS
dataset under the “jointly-train” training setting with the same backbone
networks employed.

Method Backbone J&F (%) J (%) F (%)

ReferFormer [19] Video Swin-B 64.90 62.80 67.00
unified LAVT Video Swin-B 67.11 64.79 69.43

Visualizations
In Figure S1, we illustrate the common types of challenges

that we observe in the video domain via examples from the Refer-
YouTube-VOS dataset, which include (a) invalidated object location
description, (b) action (i.e., temporal information in the expression)
grounding, (c) object occlusion, and (d) object disappearance. The
first two challenges are directly related to the language-conditional
aspect of our task, while the last two challenges are general to
the problem of object segmentation in videos. We show that the
proposed video LAVT can better deal with these challenges than
its static counterpart, LAVT. In example (a), a crucial piece of
identifying information is the condition “third in the front row.”
However, as video content is dynamic, the target object is not always
“third in the front row” and the static LAVT model gets it wrong
at times. In contrast, video LAVT gathers information from the
entire video (as we feed it all frames at once during inference),
and can determine the target object based on a global view of it
despite that the location description may not be accurate in certain
frames. In example (b), the model must differentiate apart a zebra
that is “eating the grass” and another that is not. In certain parts

of the video, whether the subject is performing an action is hard
to tell based on a single frame, and to ground actions requires the
model to “watch” several frames (or it may be helpful to “watch” all
the frames). Understandably, video LAVT is better at understanding
actions compared to LAVT. In examples (c) and (d), the target object
is respectively partially occluded and completely invisible in certain
frames. In both cases, as the segmentation results demonstrate,
video LAVT is able to benefit from gathering context from other
frames to yield more accurate segmentations.

In the following, we provide additional visualizations of the
predicted masks and feature maps.

• Fig. S2 visualizes predictions and feature maps from the
RefCOCO validation set.

• Figs. S3 and S4 visualize predictions and feature maps from
the A2D Sentences validation set.

• Fig. S5 visualizes success and failure cases from the
RefCOCO validation set.

• Fig. S6 visualizes success and failure cases from the A2D
Sentences validation set.
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TABLE S4. Comparison between the “jointly-encode-and-align” strategy of LAVT and the common “encode-then-align” strategy, in terms of overall IoU, on three
benchmark datasets based on the GRES method [45]. U: The UMD partition. G: The Google partition. In these experiments, methods use Swin-B as the visual
backbone.

Method RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val (U) test (U) val (G)

LAVT 73.50 75.97 69.33 63.79 69.79 56.49 64.02 64.49 61.31
GRES 73.82 76.48 70.18 66.04 71.02 57.62 65.00 65.97 62.70

GRES + LAVT 75.13 77.96 71.39 66.87 71.97 58.56 65.32 66.17 63.09

TABLE S5. Comparison with state-of-the-art methods on the Ref-DAVIS17 and J-HMDB Sentences datasets.

Method Backbone DAVIS-17 JHMDB
J&F (%) J (%) F (%) oIoU mIoU

ReferFormer [19] Video Swin-B 61.10 58.10 64.10 63.0 71.8
VLT [43] Video Swin-B 61.60 58.90 64.30 - -
HTML [62] Video Swin-B 62.10 59.20 66.00 - -
DMFormer [61] Swin-L (GLIP) 62.30 59.50 65.10 73.9 72.8
SgMg [58] Video Swin-B 63.30 60.60 66.00 73.7 72.5

video LAVT Video Swin-B 63.56 60.09 67.03 74.1 72.9

video LAVTLAVT

Expression:  “a hat is worn by a person in the center and third in the front row”

Expression:  “a black and white zebra is on the right eating the grass”

Expression:  “a person on the far side of a tennis court serving a tennis ball”

Expression:  “a person wearing a white shirt is driving a white truck moving down the road”

(b) Action grounding.

(a) Invalidated object location description.

(c) Object occlusion.

(d) Object disappearance.

video LAVTLAVT

video LAVTLAVT

video LAVTLAVT

Fig. S1. A comparison of LAVT and video LAVT in dealing with common types of challenges in the video domain. Examples are from the Refer-YouTube-VOS
validation set.
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w/o PWAM

w/o LP

Full model

Image

Ground truth

Expression:
“girl without hat”

Y4 Y3 Y2 Y1

Y4 Y3 Y2 Y1

Y4 Y3 Y2 Y1

Fig. S2. Visualizations of predictions and feature maps from the RefCOCO validation set. For each example, the left-most column illustrates the input expression,
the input image, and the ground-truth mask overlaid on the input image from top to bottom. On the right, each row visualizes the predicted mask and the feature
maps used for final classification (i.e., 𝑌4, 𝑌3, 𝑌2, and 𝑌1) from left to right. LP represents the language pathway and PWAM represents the pixel-word attention
module.

Y4 Y3 Y2 Y1

Expression: 
“dog jumping to the woman”

“the person in blue shirt is dancing with a dog”

Video Frames:

Frame 1 Frame 2 Frame 3

Ground truth Predictions

Fig. S3. Visualized predictions and feature maps of our video LAVT on an example from the A2D Sentences validation set. The input expression and the video
frames are illustrated on the left. On the right, we visualize the ground truth, the prediction, and the feature maps for each object in each frame. Feature maps are
those used for final segmentation (i.e.,𝑌4,𝑌3,𝑌2, and𝑌1). We observe that while𝑌4 seems to contain less information, from𝑌3 to𝑌1, the features grow increasingly
refined and gradually pinpoint the target object.
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Ground truth Predictions

Video Frames:

Y4 Y3 Y2 Y1

Y4 Y3 Y2 Y1

Y4 Y3 Y2 Y1

Expression: 
“a white cat is walking”

Frame 1 Frame 2 Frame 3

Fig. S4. Another example from the A2D Sentences validation set with visualized predictions and feature maps from video LAVT.

Expression:
“cake with cherries on top”

Expression:
“dog on right”

Image Ground truthPrediction

Expression:
“half person on left”

Expression:
“banana on top”

Expression:
“blue truck”

Image Ground truthPrediction

Expression:
“broccoli on edge of chopsticks”

Expression:
“girl in pink tank”

Expression:
“boy on skateboard”

Fig. S5. Visualizations of predicted masks and ground-truth masks on examples from the RefCOCO validation set. Examples enclosed with green lines are
successful cases, and the example enclosed with red lines is a failed case. In the successful cases, our predictions are nearly identical to the ground truth. The error
in the failure case is caused by the ambiguity in the given expression—there are two boys (one partially occluded) that are on skateboards, and it segments out both.
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Video frames Ground truthPredictions

Expressions:
“black dog jumping over the obstacles”

“a green woman is running”

Expressions:
“a man in suit is walking toward the camera”

“woman in red is going on the right”

Expressions:
“man in black shirt and blue short pants climbing”

Video frames Ground truth Video frames Ground truthPredictions Predictions

Fig. S6. Visualizations of predicted masks and ground-truth masks on examples from the A2D Sentences validation set. Our model seems to do well in a variety
of challenging scenes, overcoming difficulties such as scale variation, object deformation, and partial occlusion. However, as the failed example demonstrates, it
has difficulty in dealing with cluttered background and blurring, which can occur frequently in videos. These issues suggest future directions for improvement.
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