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Abstract

Vision-Language Models (VLMs) have achieved remark-
able success in various multi-modal tasks, but they are often
bottlenecked by the limited context window and high com-
putational cost of processing high-resolution image inputs
and videos. Vision compression can alleviate this problem
by reducing the vision token count. Previous approaches
compress vision tokens with external modules and force
LLMs to understand the compressed ones, leading to vi-
sual information loss. However, the LLMs’ understanding
paradigm of vision tokens is not fully utilised in the com-
pression learning process. We propose VoCo-LLaMA, the
first approach to compress vision tokens using LLMs. By in-
troducing Vision Compression tokens during the vision in-
struction tuning phase and leveraging attention distillation,
our method distill how LLMs comprehend vision tokens into
their processing of VoCo tokens. VoCo-LLaMA facilitates
effective vision compression and improves the computa-
tional efficiency during the inference stage. Specifically, our
method can achieve a 576× compression rate while main-
taining 83.7% performance. Furthermore, through continu-
ous training using time-series compressed token sequences
of video frames, VoCo-LLaMA demonstrates the ability to
understand temporal correlations, outperforming previous
methods on popular video question-answering benchmarks.
Our approach presents a promising way to unlock the full
potential of VLMs’ contextual window, enabling more scal-
able multi-modal applications.

1. Introduction

The advent of visual-language models [3, 5, 13, 25, 29,
30, 32, 47, 59, 60] has led to significant advancements
in visual understanding. Particularly, high-resolution im-
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Figure 1. (a) Previous methods exploit external module, such as
Q-Former [25] or average pooling [28], to “compress” vision to-
kens with substantial loss. (b) Illustration of VoCo-LLaMA, which
empowers LLM to compress vision tokens and understand com-
pressed tokens via intrinsic token distillation.

age encoding [5, 29] and the incorporation of more video
frames [32, 47] have been shown to enhance the capabili-
ties of both large visual-language models and large video-
language models, respectively. However, the large num-
ber of vision tokens occupies a substantial portion of the
valuable context window of the large language model, lead-
ing to expensive computational costs. For instance, when
using high-resolution image inputs in LLaVA-1.6 [29], a
single image with a resolution of 672 × 672 is divided
into smaller patches, each encoded with a 336 × 336 res-
olution input. This process yields an image representa-
tion consisting of 2880 vision tokens, occupying over half
of the context length. As the number of input images in-
creases, the context window for text will be further bottle-
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necked. [32, 47] investigate the efficacy of extending the
context length to the million-level mark to mitigate this is-
sue, but this approach necessitates expensive computational
resources (e.g., [32] requires over 1000 v4 TPUs) and engi-
neering efforts in data and framework development.

To address this issue, previous methods [11, 13, 25, 28,
59, 60] have exploited Q-Former [25] or Re-sampler [1] to
“compress” the encoded vision tokens. As illustrated in
Fig. 1 (a), these kind of methods compress the vision to-
kens with external modules and force LLMs to understand
the compressed ones.

Given that the LLM can effectively understand uncom-
pressed vision tokens [31], it has great potential to per-
form token compression on its own. Therefore, we propose
VoCo-LLaMA, the first vision compression method that
leverages the inherent capabilities of large language mod-
els to our best knowledge. As demonstrated in Fig. 1 (b),
we introduce Vision Compression (VoCo) tokens between
visual and text tokens. By modifying the attention mecha-
nism, we ensure that VoCo tokens attend exclusively to vi-
sual tokens, while text tokens attend solely to VoCo tokens.
Subsequently, we establish an exclusive interaction pathway
between the visual and text tokens via VoCo tokens. This
facilitates the LLM itself to compress and distill the parsing
vision tokens, specifically the transformer activations on top
of them, into compact VoCo tokens.

Building upon this, we further investigate the efficacy of
VoCo-LLaMA in handling video input. The total number of
visual tokens for each video can be substantial, far exceed-
ing the context length of large language models (LLMs),
making it impractical to utilize VoCo-LLaMA to compress
all the tokens simultaneously. To address this issue, we
first employ VoCo-LLaMA to compress the visual tokens
of each frame into voco tokens. These voco tokens are
subsequently concatenated to form a sequential token se-
ries. VoCo-LLaMA then extracts both visual and temporal
information from this series to facilitate video understand-
ing tasks. With this effective design, the LLMs can handle
much longer videos within the same context length.

During inference, VoCo-LLaMA mitigates the issue of
limited context length in LLM by employing a two-stage
forward process. The fist stage compresses visual tokens
of each image into a reduced set of VoCo tokens, while the
second stage completes the task by utilizing both VoCo to-
kens and text tokens. Moreover, VoCo tokens can be cached
and reused when handling various tasks involving identical
visual inputs, thereby enhancing computational efficiency
and reducing storage requirements compared to maintain-
ing the entire KV-cache for uncompressed visual tokens.
Experimental results on various benchmarks demonstrate
that VoCo-LLaMA achieves a 576x compression rate while
maintaining 83.7% of the original performance. Addition-
ally, significant reductions in inference computation costs

were observed, including up to 99.8% in cache storage,
94.8% in FLOPs, and 69.6% in inference time.

Our core contributions are summarized as follows:
• We propose VoCo-LLaMA, the first approach to com-

press vision tokens by leveraging the inherent capabilities
of large language models, thereby eliminating the need
for any external modules.

• We extend VoCo-LLaMA from image input to video in-
put, which allows the LLM to handle approximately 200
times more video frames while maintaining its video un-
derstanding capabilities.

• Extensive experiments on image and video benchmarks
demonstrate the effectiveness of our method, showcasing
superior performance in both token compression and in-
ference efficiency compare to various existing baselines.

2. Related Work
LLMs and Text Compression. In recent years, large lan-
guage models (LLMs) have sparked a technological revolu-
tion. As the scale of training data and model size continue to
expand, models [6, 10, 20, 22, 41, 48, 49, 51] have demon-
strated exceptional capabilities in understanding and gener-
ating language. In particular, models such as the LLaMA
series [10, 20, 48, 49] have emerged as foundational mod-
els or main components in many research works. However,
the limited context window size in LLMs has long been a
widely discussed topic. Text compression has been proven
to be an efficient approach. Long-standing works, includ-
ing [12, 33, 44, 52, 57], focus on storing text representa-
tions in transformers to achieve dense information represen-
tation. [2, 46] have demonstrated the effectiveness of distill-
ing long text information into prompt-free student models.
In a similar vein, recent studies [9, 16, 40, 50] have explored
the potential applications of compressing text in large lan-
guage models. However, the discussion of compressing vi-
sual information has been relatively understudied compared
to the language model domain. Our work pioneers the use
of LLMs’ learning capabilities to compress vision informa-
tion, aiming to bridging this gap in the field of VLMs.
VLMs and Vision Compression. The success of LLMs
has inspired significant progress in vision language models
(VLMs). By integrating visual encoders with LLMs, VLMs
can effectively achieve cross-modal understanding through
instruction tuning. Previous methods [1, 3, 5, 11, 13, 25, 29,
30, 59, 60] have substantiated the success of this training
paradigm in visual understanding. The successful applica-
tion of VLMs on images has also been rapidly extended to
the video domain [19, 23, 26, 28, 32, 34, 37, 39, 47, 58].
With the input of higher-resolution images [5, 29] and
more video frames [32, 47], VLMs can capture rich vi-
sual information. However, as the number of vision to-
kens representing an input image increases, they take up
a significant portion of the limited context window of lan-
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Figure 2. Illustration of the VoCo-LLaMA framework. Based on standard VLMs (a), VoCo-LLaMA (b) first isolate visual and text tokens
by injecting VoCo tokens, and then establishes a dedicated interaction pathway between the two modalities via VoCo tokens, enabling
effective compression of vision tokens into the transformer activations upon the compact VoCo tokens.

guage models, and can even exceed it. To address this,
previous methods [11, 13, 25, 59, 60] have largely em-
ployed Q-Former [25], which maps images to fixed-length
tokens in the language embedding space through learnable
queries, compressing visual information. A more recent ap-
proach [28] has applied average pooling with a learnable
linear layer to compress visual features through multi-stage
training strategy. Although these methods perform moder-
ately well at lower compression multiples, they cause a sig-
nificant loss of valuable visual information when the num-
ber of compressed tokens reduces. VoCo-LLaMA distills
the approach of LLMs in understanding vision tokens into
their processing of compressed tokens, significantly reduc-
ing information loss during the vision compression process.

3. Method
We first introduce VoCo-LLaMA, a large language model
capable of compressing lengthy vision tokens into compact
VoCo tokens through attention distillation, which enables
the efficient representation of visual information. Then,
we build upon these compressed tokens to continue train-
ing VoCo-LLaMA, enabling our model to capture temporal
dependencies within video data.

3.1. Vision Compression
Given a paired image and text input, we follow the design of
most vision-language models (VLMs) and encode the im-
age into a sequence of vision tokens V = {V1, . . . , Vn},
where n is the number of the output patches from the vi-
sual encoder. Similarly, the text input is encoded into a
sequence of text tokens T = {T1, . . . , Tm}. Consider an

original, unmodified standard large vision language model
(denoted as LMo), exemplified by LLaVA [30], depicted
in Fig. 2 (a). During visual instruction tuning, LMo lever-
ages both vision tokens V and text tokens T to predict the
output y, and learns the distribution pLMo(y | V, T ). For
image compression models, our goal is to employ a com-
pact set of compressed tokens C to efficiently represent the
vision token set V . Additionally, we aim to generate outputs
that closely approximates the outputs of the original model
LMo when presented with identical image and text inputs.

With an image encoded as vision tokens V , we formu-
late the image compression distillation process as learning
a compression model LMc that generates the output y con-
ditioned on the compressed tokens C and the text tokens
T . This is achieved by learning a probability distribution
pLMc

(y | C, T ). The optimization objective of LMc is to
minimize the loss function:

EV,T [DKL(pLMo
(y | V, T ) ∥ pLMc

(y | C, T ))] (1)

With above distillation objective, how to further distill
the information within the vision tokens V into the com-
pressed token C is the key of vision compression.

3.2. VoCo-LLaMA

As illustrated in Fig. 2 (b), VoCo-LLaMA leverages the
LLM’s ability to compress visual tokens into compact
Vision Compression (VoCo) tokens and learns to under-
stand image through these VoCo tokens. The input se-
quence to the large language model is formed by concate-
nating the vision tokens, the special V oCo tokens, and the
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Figure 3. (a) VLMs are bottlenecked by the limited context window when processing video frames. (b) Extension of VoCo-LLaMA to
video domain: Enabling more frames input with a limited context length.

text tokens, yielding a sequence:

(V, V oCo, T ) = (V0, . . . , Vn, V oCo, T0, . . . , Tm) (2)

In the training phase, we employ a two-stage attention
mechanism. Initially, we impose a constraint on the text to-
kens, explicitly preventing them from attending to the orig-
inal vision tokens, and requiring them to exclusively attend
to the compressed and distilled VoCo tokens. Subsequently,
the vision tokens are subjected to continuous attention from
the VoCo tokens due to the casual attention mechanism.
This deliberate design ensures that the text tokens solely
capture the distilled visual information encoded in the VoCo
tokens, rather than directly interacting with the original vi-
sion tokens, thereby achieving effective compression from
vision tokens to compressed tokens.

The compression process of VoCo-LLaMA can be el-
egantly implemented by modifying the attention mask.
Specifically, we set the attention weights between the text
tokens and the vision tokens to False, effectively render-
ing the text tokens “isolated” to the vision tokens. For-
mally, let M ∈ R(m+n+1)×(m+n+1) denote the attention
mask, where Mij = True if token i attends to token j, and
Mij = False otherwise. We define the attention mask as:

Mij =


True, if i ∈ T and j ∈ V oCo,

False, if i ∈ T and j ∈ V,
T rue, otherwise.

(3)

In practice, VoCo-LLaMA can be effectively trained un-
der the standard supervised fine-tuning paradigm, leverag-
ing the abundant image-text data readily available in VLMs.
Furthermore, the VoCo token can be compactly represented
as a set of Transformer activations, allowing them to be
cached to enhance inference efficiency, which will be dis-
cussed in Sec. 3.3.
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Figure 4. Illustration of the two stage forward operation with KV
cache for VoCo-LLaMA during inference. The first forward pass
extract image into VoCo cache. The cached VoCo tokens can be
utilized to handle different taksk that involve same image.

VoCo-LLaMA enables the large language models
to learn the compression process of vision tokens,
LM(V, V oCo), while simultaneously learning to under-
stand the compressed VoCo tokens. We define the target
learning distribution as follows:

pV oCo−LLaMA = pLM (y | LM(V, V oCo), T ) (4)

the optimization objective in Eq. (1) can be defined as:

EV,T [DKL(pLMo
(y | V, T ) || pV oCo−LLaMA] (5)

3.3. Reuse of VoCo Cache
During inference, VoCo-LLaMA mitigates the issue of lim-
ited context window size by dividing the single forward pass
into two phases. As illustrated in Fig. 4, the first forward
pass takes [vision tokens, VoCo tokens] as input to com-
press visual information into Transformer activations upon
VoCo tokens. The second forward pass takes [text tokens]
as input and load VoCo activations as KV Cache.
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Moreover, VoCo tokens derived from the first forward
pass can be cached and reused when handling various tasks
involving identical image/video inputs, thereby enhancing
computational efficiency and reducing storage requirements
compared to maintaining the entire KV-cache for uncom-
pressed visual tokens. For more details on the inference im-
plementation, please refer to the supplementary material.

3.4. Temporal Modeling
When giving a sequence of video frames V id =
{V1, . . . ,Vk} and a corresponding text input, the token
length for the entire video far exceeds LLM context length,
as shown in Fig. 3 (a). To solve this issue, VoCo-LLaMA di-
vides video input into smaller segments and input these seg-
ments into LLM with VoCo tokens {V oCo1, . . . , V oCok}.
As shown in Fig. 3 (b), all the frames are compressed into
VoCo activations. Specifically, we obtain the compressed
representation Cachet for video segment tokens Vt through
Cache(V oCot) = LM(Vt, V oCot). This yields a se-
quence of KV Cache representing compressed video tokens,
denoted by F = {Cache(V oCo1), . . . , Cache(V oCok)}.

Having obtained the time-series compressed cache se-
quences F , we enable language model to capture and com-
prehend the temporal correlations among the compressed
video tokens. With the inclusion of text tokens T , VoCo-
LLaMA learns the distribution p(y | F , T ). We adopt a
continue training process based on VoCo-LLaMA with im-
age compression capabilities, allows the model to focus on
temporal modeling, thereby streamlining the video under-
standing process.

3.5. Implementation Details
Regarding the training strategy and data, as mentioned ear-
lier in Sec. 3.2, VoCo-LLaMA only requires learning to in-
sert and compress VoCo tokens during the vision instruc-
tion tuning stage. We follow the common VLMs [29, 30]
to encode the image input into vision tokens with vi-
sion encoder and a linear projector. We employ the pre-
trained CLIP-ViT-L [43] as our visual encoder. For pre-
trained large language models, we utilize Vicuna-7B [10].
Without introducing VoCo tokens, we first align the vi-
sual encoder and language model using the LLaVA-filtered
CC3M [45] dataset with visual encoder and language model
keeping frozen. During the instruction tuning phase of
VoCo-LLaMA, incorporating multiple image understand-
ing tasks is crucial for learning a scalable image compres-
sion model. Therefore, we construct the instruction pairs
inspired by [28] using [29]. For video tuning, we further uti-
lize WebVid [4] and the QA-pairs of Video-ChatGPT [39].
Moreover, gradient checkpointing strategies are employed
to reduce computational cost during training.

We conducted experiments on several common compres-
sion strategies with the same training setting and data for

comparison. For the compression strategy with Q-Former,
we employ the architecture in [25] and configure the query
number to one, resulting in a single compression token. For
the compression strategy with average pooling, we follow
the design of the single content token in [28]. For more de-
tails on the training and inference implementation, please
refer to the supplementary material.

4. Experiments

4.1. Datasets
In this work, we conduct experiments on several common
visual understanding benchmarks for vision compression.
In particular, we report results on GQA [21], MMB (MM-
Bench) [35], MME [15], POPE [27], SEED-Bench [24],
SQAI (Image-based setting in ScienceQA) [36] and VQAv2

(VQA V2) [17]. By observing the model’s performance
on these image understanding benchmarks before and after
compression (i.e. with initial vision tokens / VoCo tokens),
we can observe the effects of the visual information loss
that occurs during the vision compression process. We eval-
uate the performance on these visual understanding bench-
marks in accordance with the details outlined in [30]. As for
the video domain, we evaluate the zero-shot performance
on several video question-answering benchmarks. MSVD-
QA [53] is a video QA dataset consisting of 1,970 video
clips with 50,505 QA pairs, built upon the Microsoft Re-
search Video Description Corpus [7]. MSRVTT-QA [53]
is a large-scale video QA dataset featuring 10K videos and
243K question-answering pairs with complex scenes, based
on the MSR-VTT dataset [54]. ActivityNet-QA [56] is a
fully annotated video QA dataset containing 58K question-
answering pairs derived from 5,800 complex web videos
from the ActivityNet dataset [18].

4.2. Vision Compression Configuration
In the primary experiment of vision compression, we
present the results of compressing all vision tokens of an
image into a single VoCo token. To rigorously quantify
the performance loss of VoCo-LLaMA during compression,
we designed two comparative training settings: the Upper
Bound model, which represents the best compression per-
formance. The ideal case for a visual compression model
is to obtain the same visual understanding capability as the
upper bound model. And the Lower Bound model, which
represents the worst compression performance.

The initialization model is trained by integrating VoCo
tokens in a manner analogous to VoCo-LLaMA, without
modifying the attention mask strategy. During inference,
we employ a standard causal attention mask. This set-
ting effectively controls for performance fluctuations in-
duced by the introduction of additional special tokens. In
contrast, the random compression model is trained under
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Method Token GQA MMB MME POPE SEED SQAI VQAv2 Avg.

Upper Bound 576 61.1 64.0 1487.2 85.0 57.9 66.5 77.7 -
100% 100% 100% 100% 100% 100% 100% 100%

VoCo-LLaMA 1 57.0 58.8 1323.3 81.4 53.7 65.4 72.3 -
82.5% 87.5% 81.2% 88.4% 80.0% 81.0% 85.2% 83.7%

Avg. Pool [28] 1 52.9 55.5 1210.3 79.1 50.3 62.2 65.0 -
+ Linear 65.0% 79.6% 68.1% 81.0% 63.8% 25.8% 65.2% 64.1%

Q-Former [25] 1 51.1 51.7 1079.7 77.3 47.2 62.7 63.4 -
57.3% 70.5% 53.2% 75.2% 49.0% 34.5% 60.8% 57.2%

Lower Bound 1 37.7 22.3 617.3 53.9 36.9 60.7 41.2 -
0% 0% 0% 0% 0% 0% 0% 0%

Table 1. Comparison with previous approaches on vision compression using common visual understanding benchmarks. All methods
compress 576 vision tokens (from (336/14)2 = 576) into one. We further report the compression performance mentioned in Sec. 3.5.

Token MMB GQA VQAv2 SEED Avg.

576 64.0 61.1 77.7 57.9 100%

128 61.0 59.8 76.9 59.1 97.7%
64 60.5 60.4 75.4 56.3 93.7%
32 59.4 60.2 75.3 56.2 92.6%
16 58.6 59.4 75.4 56.2 91.3%
8 58.7 59.2 75.3 56.3 91.3%
4 60.4 58.4 74.5 56.0 90.4%
2 60.1 57.7 73.5 55.0 87.8%
1 58.8 57.0 72.3 53.7 83.8%

1 22.3 37.7 41.2 36.9 0%

Table 2. Effect of VoCo tokens count on widely used benchmarks.
The number of VoCo tokens increases from 1 to 128. Green and
red represent the Upper and Lower Bound, respectively.

identical settings as the initialization model. During infer-
ence, we restrict the visibility of text tokens to only the
VoCo token, isolating the visual information. This setup
represents a scenario without vision compression training,
providing a baseline for evaluating. Based on the perfor-
mance boundary model, the compression retention rate can
be subsequently calculated as (result of VoCo-LLaMA −
Lower Bound)/(Upper Bound − Lower Bound).

4.3. Results
Vision Compression. Tab. 1 presents the results of VoCo-
LLaMA on vision compression. To explore the maximum
potential of our method, we report the highest achievable
compression ratio, which compresses vision tokens into
one single VoCo token. We report results of our com-
pression model on various common visual understanding
benchmarks, as well as the compression retention rates de-
fined based on upper and lower bound models introduced
in Sec. 4.2. It can be observed that our method preserves
the original visual information to a large extent, even at an
extremely high compression ratio of 576×. Specifically, we

Method N GQA POPE SQAI VQAT

LLaMA-VID [28]
16 58.2 83.1 67.4 50.8
4 56.2 83.5 68.7 49.1
1 55.5 83.1 68.8 49.0

VoCo-LLaMA 1 58.3 85.0 69.5 52.7

Table 3. Comparison with previous compression methods which
compress image into single token. N means the number of “con-
tent” tokens in LLaMA-VID or the VoCo tokens in our method.
The input resolution is set to 224 for fair comparison.

Method Token MMB GQA VQAv2 SEED

VoCo-LLaMA

32 59.4 60.2 75.3 56.2
16 58.3 58.9 74.9 55.8
4 59.7 58.0 73.5 55.2
1 57.9 56.1 71.2 53.0

Table 4. Compression performance with adjusted VoCo token
numbers during inference on model trained with fixed numbers.

achieved an average compression retention rate of 83.7%
across seven widely used benchmarks. Especially on MM-
Bench, POPE and VQAv2, our method retained more than
85% of the performance during compression. The results
indicate that VoCo-LLaMA can effectively compress vision
tokens. Moreover, our method consistently outperforms
the performance lower bound model of random compres-
sion across all benchmarks. This demonstrates that the ad-
vantages of VoCo-LLaMA, such as significant reductions
in context length and improved calculation efficiency, out-
weigh the performance loss caused by compression.

We additionally compare our method with previous com-
mon learning-based approaches (i.e., Q-Former and average
pooling) for vision token compression. Our method sig-
nificantly outperforms previous methods across all bench-
marks. Specifically, we observe an improvement of 19.6%
in average compression retention rate, surpassing the av-
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Method Token RefCOCO RefCOCO+ RefCOCOg GRIT Avg.val test A test B val test A test B val (U) test (U) refexp

Upper Bound 256 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 69.34 100%

VoCo-LLaMA 8 85.17 88.92 79.21 80.02 85.13 70.22 80.36 80.64 68.59 90.7%
1 83.29 86.89 77.87 77.62 83.02 67.74 78.32 78.06 67.69 79.9%

Lower Bound 1 68.34 72.96 68.03 62.58 64.77 50.65 62.30 62.99 60.50 0%

Table 5. Compression performance on REC task. Avg. means the average compression retention rate on all benchmarks.

Method Token RefCOCO RefCOCO+ RefCOCOg Avg.val test A test B val test A test B val (U) test (U)

Upper Bound 256 75.61 44.26 104.83 56.42 40.98 68.25 62.71 65.58 100%

VoCo-LLaMA 8 73.87 43.13 102.71 55.34 39.91 67.00 61.59 64.45 91.3%
1 71.92 41.81 94.50 53.98 38.96 65.35 60.46 63.17 81.6%

Lower Bound 1 56.73 31.82 78.09 43.71 30.26 52.22 50.49 53.22 0%

Table 6. Compression performance on REG task. Avg. means the average compression retention rate on all benchmarks.

erage pooling compression strategy. In contrast, while Q-
Former has demonstrated impressive capabilities in captur-
ing visual features with 32 queries, its performance under-
goes a substantial decline when the query count is reduced
to a single digit. This proves that our VoCo-LLaMA, which
utilizes the knowledge distillation from language models it-
self, maintains more valuable vision information than that
of average pooling or query-based compression.
Number of VoCo tokens. We evaluate the impact of
the number of VoCo tokens on vision compression per-
formance. Tab. 2 illustrates the trend of compression per-
formance retention as the number of VoCo tokens varies,
where the green and red lines represent the upper and
lower bounds of compression performance, respectively.
We adopted the same training settings and data as in the
main experiments. It can be observed that as the number of
VoCo tokens grows, the overall compression performance
of the model shows an upward trend. Increasing the num-
ber of tokens within the range of fewer than 10 tokens re-
sults in a significant improvement in compression perfor-
mance. Finally, when conducting 128 VoCo tokens, the
model achieves an average compression performance reten-
tion rate of 97.7%, indicating that the performance loss due
to compression is almost negligible when compressing into
more than 100 tokens. Interestingly, we observe that when
training with 128 VoCo tokens, the result on the SEED-
Bench exceeds the performance upper bound model.
Method of Compression. We compare our method with
LLaMA-VID on vision compression, specifically evaluat-
ing its full model that utilizes both context and content to-
kens. For a fair comparison, VoCo-LLaMA is trained under
the exact same settings and applied the same visual encoder,
EVA-G [14], in this experiment. As shown in Tab. 3, our
method outperforms the previous approach when using a
single content compression token, even surpassing the per-

formance of LLaMA-VID when it uses multiple context to-
kens. In particular, we could observe an improvement of 2.8
and 3.7 on GQA and VQAT benchmarks, respectively.
Adaptability of VoCo Number. To assess the model’s
adaptability to varying numbers of compression tokens, we
trained the model with a fixed number of tokens and eval-
uated its performance with different token numbers. As
demonstrated in Tab. 4, we conducted experiments by fix-
ing the number of VoCo tokens (32) during training and
varying the number of tokens during inference. Our method
achieves better performance with an increasing number of
compressed tokens, without requiring specialized training
for elastic compressed token.
Results on fine-grained tasks. We analyze the ex-
tent of loss of fine-grained visual information after high-
magnification compression of vision tokens in our ap-
proach. Here, we apply our method to [8] which is a
cleanly structured MLLM trained on fine-grained task data
such as REG, REC, and PointQA. As shown in Tab. 5
and Tab. 6, when compressing vision tokens to 1 VoCo to-
ken, our method maintained an impressive average com-
pression retention rate of 79.9% and 81.6% for REC and
REG tasks, respectively. Furthermore, by increasing the
number of VoCo tokens to 8, we observed a significant im-
provement in the average compression retention rate. We
observe that VoCo-LLaMA achieves similar compression
retention rate to other benchmarks on fine-grained tasks,
mainly because the Lower Bound model incurs more in-
formation loss on fine-grained tasks. Please refer to the
supplementary material for additional fine-grained bench-
marks, including VisWiz, OCRBench and others.
Inference Efficiency. We discuss the inference efficiency
under the scenarios that images are cached as discussed
in Sec. 3.3. Due to our model’s design, the representa-
tion of compressed image (i.e., transformer activations on
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Method Token KV Cache Length Storage Memory (MB) ∆ CUDA Time (ms) ↓ ∆ FLOPs (T) ↓ ∆

Baseline 576 - - - 440.5 - 9.6 -
Full Caching 576 576 302.4 - 154.9 64.8% 1.2 87.5%

VoCo-LLaMA 1 1 0.525 99.8% 134.0 69.6% 0.5 94.8%

Table 7. Efficiency analysis of VoCo-LLaMA including cache storage memory, CUDA time and the FLOPs. ∆ denotes the reduction ratio.

Method Visual Encoder LLM Res. Image Token MSVD-QA MSRVTT-QA ActivityNet-QA
Acc Score Acc Score Acc Score

Methods w/o Vision Compression

FrozenBiLM [55] CLIP-L DeVERTa-V2 224 256 32.3 - 16.8 - 24.7 -
Video-LLaMA [58] EVA-G Vicuna-7B 224 256 51.6 2.5 29.6 1.8 12.4 1.1
VideoChat [26] - Vicuna-7B 224 - 56.3 2.8 45.0 2.5 26.5 2.2
Video-ChatGPT [39] CLIP-L Vicuna-7B 224 256 64.9 3.3 49.3 2.8 35.2 2.7
BT-ADapter [34] CLIP-L Vicuna-7B - - 67.5 3.7 57.0 3.2 45.7 3.2
Vista-LLaMA [38] EVA-G Vicuna-7B 224 256 65.3 3.6 60.5 3.3 48.3 3.3
Chat-UniVi [23] CLIP-L Vicuna-7B 224 256 69.3 3.7 55.0 3.1 46.1 3.3

Methods w/ Vision Compression

LLaMA-VID [28] EVA-G Vicuna-7B 224 2 69.7 3.7 57.7 3.2 47.4 3.3

VoCo-LLaMA CLIP-L Vicuna-7B

224 2 72.3 3.9 61.1 3.5 47.9 3.4
336 2 72.6 3.9 61.2 3.5 47.9 3.4
224 8 73.4 3.9 62.0 3.5 48.5 3.4
336 8 73.5 3.9 62.3 3.5 48.6 3.4

Table 8. Comparison with leading video understanding methods, with and without vision compression, on three zero-shot benchmarks.

top of VoCo tokens) can be stored and repeatedly utilized
in the form of a KV cache. We conduct a comparative
analysis of CUDA time, FLOPs, and KV Cache storage
size during the inference process, and compare our method
with the baseline method and the full caching method. The
baseline method, as its name suggests, does not employ
any caching strategy and directly encodes and infers im-
ages. In contrast, the full caching method stores the un-
compressed Transformer activations upon all vision tokens
as KV caches. More specifically, we follow the approach
of [42], storing the keys and values of each Transformer
layer. As displayed in Tab. 7, we conduct an inference ef-
ficiency analysis on a single NVIDIA A100 using identi-
cal lengths of text prompts and single-image inputs. Com-
pared to the baseline model without caching strategy, VoCo-
LLaMA achieves a significant reduction of 69.6% in CUDA
time and 94.8% in FLOPs. Relative to the full caching strat-
egy, our method save 99.8% of cache storage while achiev-
ing lower CUDA time and FLOPs, demonstrating the in-
ference efficiency gains brought by our approach. Please
refer to the supplementary material for further discussion
and details for inference efficiency.

Video Understanding. We further evaluate the perfor-
mance of VoCo-LLaMA on three widely used video un-
derstanding benchmarks, reporting results for input image
resolutions of 224 and 336, respectively. First, we discuss
the video understanding methods that utilize vision com-
pression. Ensuring fair comparison, we adopted the same

compression ratio as previous method [28], compressing
each video frame into 2 VoCo tokens for training and infer-
ence. Our method consistently outperforms previous video
compression methods across all three benchmarks. Specifi-
cally, on the MSVD-QA and MSRVTT-QA datasets, VoCo-
LLaMA achieved accuracies of 72.3% and 61.1%, respec-
tively, corresponding to absolute gains of 3.7% and 5.9%
over the previous best methods. Moreover, our method
achieves the highest scores of 3.9 and 3.5, respectively.

In comparison to video understanding methods that do
not employ vision compression, our approach, which repre-
sents each video frame with a mere 2 VoCo tokens, demon-
strates strong competitiveness against methods that utilize
256 or more vision tokens per frame. To further explore
the potential of VoCo-LLaMA, we opted to compress video
frames into the number of VoCo tokens that exhibited the
optimal compression performance within the 0 order of
magnitude (i.e., 8 tokens). Notably, as we increase the num-
ber of tokens, our method effectively leverages additional
visual information. We also analyze the performance loss
caused by vision compression and evaluate on other video
QA benchmarks, as detailed in the supplementary material.

5. Conclusion

In this paper, we propose VoCo-LLaMA, the first approach
to compress visual information using LLMs. By distilling
the LLMs’ understanding of vision tokens into a compact
representation, our method can compress hundreds of vision
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tokens into a single VoCo token, while minimizing informa-
tion loss. VoCo-LLaMA significantly reduces cache storage
and boosts efficiency during the inference stage. Moreover,
our method exhibits promising performance in learning
temporal understanding on video data with continuous
training. In summary, our approach offers a promising so-
lution for fully utilise the limited context window of VLMs,
making them more efficient for multi-modal applications.
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